VIVEKANAND EDUCATION SOCIETY INSTITUTE OF TECHNOLOGY (AUTONOMOUS)

Hashu Advani Memorial Complex, Collector's Colony, Chembur, Mumbai, 400074, Maharashtra, India www.vesit.ac.in

Syllabus Approved By: Academic Council of V.E.S. Institute of Technology Effective from: 2023-24

Preamble

Engineering education forms the cornerstone of technological innovation, industrial advancement, and societal transformation. As the world navigates an era of rapid change driven by automation, artificial intelligence, sustainable technologies, and global connectivity, VESIT positions itself as a catalyst for cultivating a dynamic learning ecosystem.

At VESIT, we strive to foster critical thinking, technical expertise, academic excellence, and holistic development among aspiring engineers. We are committed to shaping professionals who are adaptable, collaborative and are also deeply conscious of their social and environmental responsibilities.

Leveraging its autonomous status and affiliation with the University of Mumbai, VESIT designs a forward-thinking, outcome-based curriculum that emphasizes industry relevance and experiential learning.

The syllabus at VESIT has been structured in alignment with the principles of the National Education Policy (NEP) 2020, focusing on flexibility and multidisciplinary learning. The key thrust areas of education at VESIT include :-

Student-Centric Approach:

The programme is designed to offer students greater autonomy in shaping their academic journey. The syllabus comprises of **Core (Major) and Minor courses** from Diverse Disciplines as well as a wide range of **Open Electives**. Students can tailor their learning paths based on their interests and career aspirations. The curriculum also integrates mentored field projects and on the job training, providing valuable hands-on experience. Additionally, students with a research inclination can also explore **research-based projects** or pursue **Honours by Research**.

Multidisciplinary Approach:

VESIT's curriculum reflects a strong interdisciplinary focus, incorporating emerging fields and cutting-edge technologies. Courses are designed to bridge various domains with offerings such as Machine learning, Artificial Intelligence & Data Science, Cyber Security, Geographic Information Systems (GIS), Internet of Things (IoT), Register transfer level VLSI, Robotics, Quantum Technologies, Mobile application development, Industrial Automation, Edge Computing and Embedded Intelligence and Information Security.

This approach encourages broader thinking and prepares students for diverse career paths.

Emphasis on Conceptual Clarity:

The curriculum lays stress also on a strong theoretical foundation, ensuring that students gain deep conceptual understanding, which is essential for mastering advanced topics and solving real-world problems.

Fostering Creativity and Critical Thinking:

Courses are designed to nurture a critical and creative mindset, promoting analytical reasoning, problem-solving, and innovation. Students are encouraged to question, explore, and think beyond conventional solutions.

Comprehensive Evaluation and Assessment:

Student performance is assessed through a number of assessment tools that includes the Mid-term Tests, Continuous Assessments, End-Semester Examinations. These evaluation tools are designed to measure the knowledge retention of students as well as their ability to apply concepts effectively in practical situations. Guided by a vision of excellence and inclusivity, and supported by a passionate faculty, VESIT aspires to be a hub where ideas flourish, startups emerge, and industry-academia partnerships thrive. Our goal is to transform students into innovators, entrepreneurs, researchers and responsible leaders poised to drive sustainable growth and meaningful change in society.

Dr. J M Nair

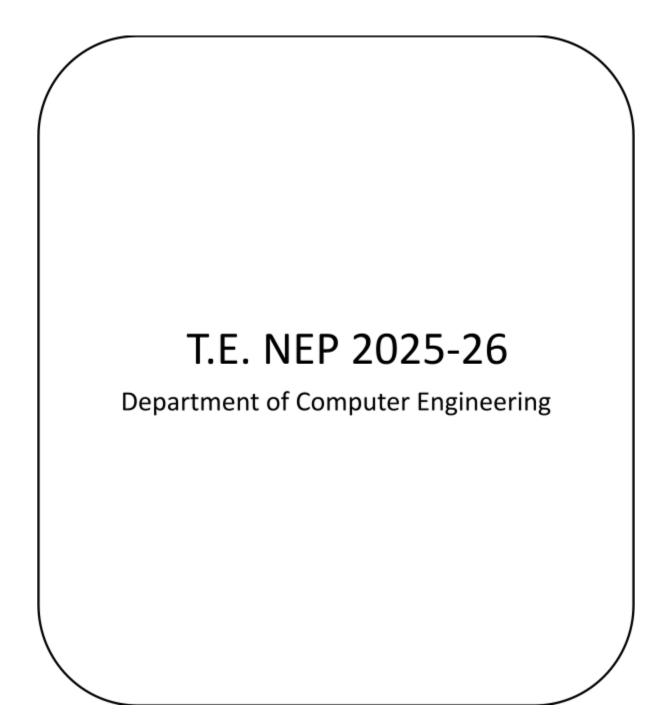
Dr. M Vijayalakshmi

Dr. Mrs. Gresha S Bhatia

Principal, VESIT

Vice Principal, VESIT

Academic Coordinator, VESIT


Preamble Department of Computer Engineering

The programme under the Department of Computer Engineering is committed to nurturing innovation-driven, technically competent, and industry-ready professionals. The schema and syllabus is designed in sync with the mission of the department and adhering programme objectives(POs) and structured through course objectives(COs). The core computational thinking, curriculum emphasizes algorithmic precision, and software-hardware integration through foundational courses such as Data Structures, Operating Systems, Design and Analysis of Algorithms, and Computer Networks. To stay ahead in a competitive technological environment, the department integrates **Multidisciplinary Minor Courses (MDM)** in Artificial Intelligence, Machine Learning, and Deep Learning, enabling students to master data-driven decision-making and intelligent system design. This solid groundwork is complemented by advanced topics in Cryptography, Blockchain Development, and Software Engineering to cultivate system-level understanding and problem-solving acumen. The emphasis on industry readiness is exemplified through Vocational and Skill Development tracks in Full Stack Web Development, Cloud and Distributed Computing, and Mobile App Development, which prepare students for real-world software development environments and DevOps culture. Furthermore, Program Electives in NLP, Embedded Systems, Data Engineering, and GeoInformatics allow learners to tailor their expertise to specific industry domains. The department also champions sustainability and ethical innovation through **Open Electives** in Green Technologies, Cyber Laws & Digital Forensics, and Smart Systems, encouraging responsible technological advancement. Emerging areas such as Quantum Technologies, Edge Computing, Robotics, and VLSI are woven into the Minor in Emerging Areas (MEA) to ensure forward compatibility and academic agility. Through a strategic blend of theory, practice, and emerging tech, the Department empowers students to lead in next-generation computing and intelligent systems with clarity, competence, and conscience.

Dr. Nupur Giri HOD, CMPN, VESIT Dr. Mrs. Gresha S Bhatia DHOD, CMPN, VESIT

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.LC.T.E.& Recognized by Govt. of Maharashim)

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCITE & Recognized by Govt. of Maharaham)

Department of Computer Engineering

INDEX

Sr. No.	Contents	Page No.
1	Schema Sem V& VI 46 credits	03
2	Sem V NEP Syllabus 24 credits	07
3	Sem VI NEP Syllabus 22 credits	68
4	MDM Sem V & VI Scheme and Syllabus 6 credits	158
5	PEC 1 Sem V 4 credits	29
6	PEC 2 Sem VI 4 credits	89
7	PEC 3 Sem VI 4 credits	116
8	Open Elective 2 Scheme and Syllabus 4 credits	173
9	Dual Minor (MEA) Sem V & VI 9+9* credits	208
10	Honors by Research Sem V & VI 9+9* credits	257

*In online mode

(An Autonomous Institute Affiliated to University of Mumbri, Approved by ALC.T.E.& Recognized by Govt. of Maharashim) Department of Computer Engineering

Semester V Teaching Scheme **Teaching scheme** Credits assigned Total Course Course (Contact Hours) **Course name** Туре Code Th Pr Tut Th Pr/Tut PCC NCMPC51 Theory of Computer Science 3 3 3 --_ NCMPC52/ PCC Data Warehousing & Mining 3 2 3 1 4 _ NCMPCL52 NCMPC53/ PCC 1 Cryptography and System Security 3 2 3 4 _ NCMPCL53 NCMPE5X/ PEC Program Elective 1 3 2 3 1 4 _ NCMPEL5X NCMMM51/ 3 1 MDM Course 3 Machine Learning 2 3 4 _ NCMMML51 OE NOE50X **Open Elective 2** 3 1 4 4 --PCC NCMPCL51 Cloud Computing Lab 2 1 1 _ _ _ 18 1 19 5 10 -**Total Hours** 29 **Total Credits** 24

	Program Elective 1								
Sr. No	Course Code	Course Name							
1	NCMPE51	Data Engineering							
2	NCMPEL51	Data Engineering Lab							
3	NCMPE52	Design Thinking							
4	NCMPEL52	Design Thinking Lab							
5	NCMPE53	Internet of Everything							
6	NCMPEL53	Internet of Everything Lab							

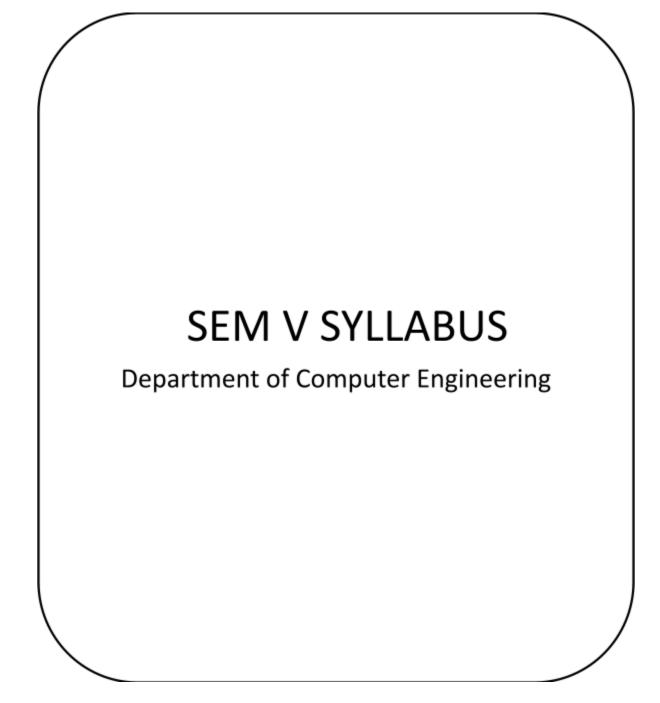
VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Affiliated to University of Manthai, Approved by ALCILE & Recognized by Govt. of Maharadata)

	Semester V Examination Scheme																																																														
				Th	eory																																																										
Course Type	Course Code	Course Name	Internal Assessme	Internal Assessment																																																								Exam Duration	Term Work	Pract & oral	Total
			Mid Test CA		Mid Test CA		Mid Test CA		Mid Test CA		Mid Test CA		Mid Test CA		Mid Test CA		Mid Test CA		Mid Test CA		Exam		orui																																								
РСС	NCMPC51	Theory of Computer Science	20	20	60	2	-	-	100																																																						
РСС	NCMPC52/ NCMPCL52	Data Warehousing & Mining	20	20	60	2	25	-	125																																																						
РСС	NCMPC53/ NCMPCL53	Cryptography and System Security	20	20	60	2	25	-	125																																																						
PEC	NCMPE5X/ NCMPEL5X	Program Elective 1	20	20	60	2	25	-	125																																																						
MDM	NCMMM51/ NCMMML51	Course 3 Machine Learning	20	20	60	2	25	25	150																																																						
OE	NOE50X	Open Elective 2	20	20	60	2	-	-	100																																																						
РСС	NCMPCL51	Cloud Computing Lab	-	-	-	-	25	25	50																																																						
					-		Tota	ıl marks	775																																																						

	Open Elective 2									
Sr. No.	Course Code	Course names								
For Departme	For Departments of AI&DS, CMPN, IT									
1	NOE506	Solid and Hazardous waste management								
2	NOE507	Fundamentals of Sustainability Engineering								
3	NOE508	Energy Audit and Management								
4	NOE509	Electric Vehicles								
5	NOE510	Industrial Automation								
6	NOE511	Fundamentals of Robotics								

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Affiliated to University of Mantala, Apprend by ALCIE & Recognized by Govt. of Maharabira)

	Semester VI Teaching Scheme								
Course	Course	Course name		hing sch 1tact Ho		Credits a	Total		
Туре	Code		Th	Pr	Tu	Th	Pr/Tut		
РСС	NCMPC61/ NCMPCL61	Software Engineering and Architecture	3	2	-	3	1	4	
РСС	NCMPC62/ NCMPCL62	Cryptocurrency & Blockchain Development	3	2	-	3	1	4	
PEC	NCMPE6X/ NCMPEL6X	Program Elective 2	3	2	-	3	1-	4	
PEC	NCMPE6X/ NCMPEL6X	Program Elective 3	3	2	-	3	1	4	
MDM	NCMMM61	Course 4 Deep Learning	1	2	-	-	2	2	
VSEC	NCMVS61	Mobile App Development	1	2	-	-	2	2	
PCC	NCMCP61	Capstone Project I	-	4	-	-	2	2	
			15	14	0	14	8	22	
		Total Hours		29		Total C	Credits	22	


	Progra	m Elective 2	Program Elective 3				
Sr. No	Course Code	Course Name	Course Code Course Name				
1	NCMPE61	Applied Data Science	NCMPE64	Natural Language Processing and Generative AI			
2	NCMPEL61	Applied Data Science Lab	NCMPEL64	Natural Language Processing and Generative AI Lab			
3	NCMPE62	Graphics & Animation	NCMPE65	GeoInformatics			
4	NCMPEL62	Graphics & Animation Lab	NCMPEL65	GeoInformatics Lab			
5	NCMPE63	System Software	NCMPE66	Embedded Systems and RTOS			
6	NCMPEL63	System Software Lab	NCMPEL66	Embedded Systems and RTOS Lab			

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Affiliated to University of Mantala, Apprend by ALCIE & Recognized by Govt. of Maharabira)

				Tł	neory				
Course Type	Course Code	Course Name	Inter Assess		End	Exam	Term Work	Pract &	Total
Type			Mid Test	CA	- Sem Exam	Duration (in Hrs)	WUI K	oral	
РСС	NCMPC61/ NCMPCL61	Software Engineering and Architecture	20	20	60	2	25	-	125
РСС	NCMPC62/ NCMPCL62	Cryptocurrency & Blockchain Development	20	20	60	2	25	-	125
PEC	NCMPE6X/ NCMPEL6X	Program Elective 2	20	20	60	2	25	-	125
PEC	NCMPE6X/ NCMPEL6X	Program Elective 3	20	20	60	2	25	-	125
MDM	NCMMM61	Course 4 Deep Learning	-	-	-	-	50	25	75
VSEC	NCMVS61	Mobile App Development	-	-	-	-	50	25	75
PCC	NCMCP61	Capstone Project I	-	-	-	-	25	25	50

(An Autonomous Institute Affiliated to University of Mumbui, Approved by A.I.C.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

COURSE NAME: THEORY OF COMPUTER SCIENCE

Course Code	Course Name		aching Schen eaching Hour	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMPC51	Theory of Computer Science	3	-	-	3	-	-	3

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
	Ivame	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMPC51	Theory of Computer Science	3	-	-	3	-	-	3
	Course Name			Exa	amination Scheme			
		T						
Course		Interna	l Assessment	End	Exam	Term	Practical	-
Code		Mid- Term Test	Continuous Assessment	End Sem Exam	Duration (in Hrs)	Work	& Oral	Total
NCMPC51	Theory of Computer	20	20	60	2	-	-	100
	Science							

Prerequ	Prerequisite: Discrete Structures							
Course	Course Objectives:							
1	Acquire conceptual understanding of fundamentals of grammars and languages.							
2	Build concepts of theoretical design of deterministic and non-deterministic finite automata and push down automata.							
3	Develop understanding of different types of Turing machines and applications.							
4	Understand the concept of Undecidability.							
Course	Course Outcomes:							
1	Identify the central concepts in theory of computation and differentiate between deterministic and nondeterministic automata, also obtain equivalence of NFA and DFA.							

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute AllElated to University of Manthai, Approved by ALCIE & Recognized by Gord. of Maharashter)

2	Acquire conceptual understanding of fundamentals of grammars and languages.
3	Devise regular, context free grammars while recognizing the strings and tokens.
4	Build concepts of theoretical design of deterministic and non-deterministic push down automata.
5	Develop understanding of different types of Turing machines and applications.
6	Understand the concept of Undecidability.

Module		Topics	CO	Hours
1		Basic Concepts and Finite Automata		
	1.1	Importance of TCS, Alphabets, Strings, Languages, Closure properties, Finite Automata (FA) and Finite State machine (FSM).		
	1.2	Deterministic Finite Automata (DFA) and Nondeterministic Finite Automata (NFA): Definitions, transition diagrams and Language recognizers, Equivalence between NFA with and without ε -transitions, NFA to DFA Conversion, Minimization of DFA, FSM with output: Moore and Mealy machines, Applications and limitations of FA.	CO1	09
2		Regular Expressions and Languages		
	2.1	Regular Expression (RE), Equivalence of RE and FA, Arden's Theorem, RE Applications	CO2	07
	2.2	Regular Language (RL), Closure properties of RLs, Decision properties of RLs, Pumping lemma for RLs.		
3		Grammars		
	3.1	Grammars and Chomsky hierarchy		
	3.2	Regular Grammar (RG), Equivalence of Left and Right linear grammar, Equivalence of RG and FA.	CO2 CO3	08
	3.3	Context Free Grammars (CFG) Definition, Sentential forms, Leftmost and Rightmost derivations, Parse tree, Ambiguity, Simplification and Applications, Normal Forms: Chomsky Normal Forms (CNF) and Greibach Normal Forms (GNF), Context Free language (CFL) - Pumping lemma,	205	

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Affiliated to University of Mantala, Apprend by ALCIE & Recognized by Govt. of Maharabira)

		Closure properties.		
4		Pushdown Automata(PDA)		
	4.1	Definition, Language of PDA,PDA as generator, decider and acceptor of CFG, Deterministic PDA, Non-Deterministic PDA, Application of PDA.	CO4	04
5		Turing Machine (TM)	CO5	
	5.1	Definition, Design of TM as generator, decider and acceptor, Variants of TM: Multitrack, Multitape, Universal TM, Applications, Power and Limitations of TMs		09
6		Undecidability		
	6.1	Decidability and Undecidability, Recursive and Recursively Enumerable Languages, Halting Problem, Rice's Theorem, Post Correspondence Problem.	CO6	02
	•		Total	39

Text B	ooks:
1	John E. Hopcroft, Rajeev Motwani, Jeffery D. Ullman, "Introduction to Automata Theory, Languages and Computation", 3 rd Edition, Pearson Education, 2008.
2	Michael Sipser, "Theory of Computation", 3 rd Edition, Cengage learning. 2013.
3	Vivek Kulkarni, "Theory of Computation" , Illustrated Edition, Oxford University Press, (12 April 2013) India.
Refere	nce Books:
1	J. C. Martin, "Introduction to Languages and the Theory of Computation" , 4 th Edition, Tata McGraw Hill Publication, 2013.
2	N. Chandrashekhar & K.L.P. Mishra, "Theory of Computer Science, Automata Languages & Computations", PHI publications.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.LC.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

Internal Assessment:

Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks. The Mid Term test is to be conducted when approximately 50% syllabus is completed and its duration will be one hour.

Continuous Assessment:

Continuous Assessment is of 20 marks. The rubrics for assessment will be considered on approval by the subject teachers. It should be minimum 2 or maximum 4 from the following table.

Marks
5 Marks
5 Marks
5 Marks
10 Marks
10 Marks
10 Marks
10 Marks
10 Marks
10 Marks
10 Marks
10 marks
0 Marks
-

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremees Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gort. of Maharashtra)

1	Mock Viva/Practical
2	Skill Enhancement Lecture
3	Extra Assignments/lab/lecture
End Sem	ester Theory Examination:
1	Question Paper will comprise a total of six questions
2	All Question carries equal Marks
3	Questions will be mixed in nature(For ExSuppose question 2 has part (a) from module 3 then part (b) will be from any other module other than module 3
4	Only Four Questions need to be solved
5	In the question paper, the weightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus.

(An Autonomous Institute Affiliated to University of Mambai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashim)

Department of Computer Engineering

COURSE NAME: DATA WAREHOUSING AND MINING

Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
Data	2	2		2			
ĕ	3	2	-	3	1	-	4
	Data	Course Name (Te Theory Data Warehousing and 3	Course Name(Teaching HouTheoryPracticalDataVarehousing and32	Course Name(Teaching Hours)TheoryPracticalTutorialDataWarehousing and32-	Course Name(Teaching Hours)TheoryPracticalTutorialTheoryPracticalTutorialData2-3	Course Name(Teaching Hours)Credits ATheoryPracticalTutorialTheoryTW/PRData32-31	Course Name Credits Assigned Course Name (Teaching Hours) Credits Assigned Theory Practical Tutorial Theory TW/PR Tut Data 3 2 - 3 1 -

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Coue		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMPC52	Data Warehousing and Mining (Theory)		-	-	3	-	-	3
				Exan	nination Sc	cheme		
Course Code	Course Name	Theory			Exam	T	Practical	
Code		Internal Mid-Term Test	Assessment Continuous Assessment	End Sem Exam	(in Hrs)	Term Work	& Oral	Total
NCMPC52	Data Warehousing and Mining (Theory)	20	20	60	2	-	-	100

Prerequisite:	Prerequisite: Database Concepts					
Course Obje	Course Objectives:					
1	To identify the significance of Data Warehousing and Mining					
2	To understand ETL process and OLAP models					
3	To perform data cleaning and data visualization					
4	To select suitable data models and mining algorithms for specific applications.					
5	To promote research in cutting-edge data mining techniques and applications.					
6	To study web and spatial data mining.					

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute AllElated to University of Manthai, Approved by ALCIE & Recognized by Gord. of Maharashter)

Course Outc	omes: The students will be able to :
1	Understand data warehouse fundamentals and design data warehouse with dimensional modeling.
2	Perform ETL process to create the data warehouse and apply OLAP operations
3	Understand data mining principles and perform data preprocessing and visualization
4	Identify appropriate data mining algorithms to solve real world problems
5	Compare and evaluate different data mining techniques like classification, prediction, clustering and association rule mining
6	Explore various aspects and methods with respect to spatial & web mining.

Module		Content	СО	Hours
1		Data Warehousing Fundamentals		
	1.1	Introduction to Data Warehouse, Data warehouse architecture, Data warehouse versus Data Marts, Top-down versus Bottom-up approach, E-R Modeling versus Dimensional Modeling	CO1	5
	1.2	Information Package Diagram, Data Warehouse Schemas; Star Schema, Snowflake Schema, Fact Constellation Schema. Factless Fact Table, Slowly Changing and Rapidly Changing Dimensions		
2		ETL & OLAP		
	2.1	Major steps in ETL process, Data extraction: Techniques, Data transformation: Basic tasks, Major transformation types, Data Loading: Applying Data,	CO2	6
	2.2	OLTP Vs OLAP, OLAP definition, Dimensional Analysis, Hypercubes, OLAP operations: Drill down, Roll up, Slice, Dice and Rotation, OLAP models: MOLAP, ROLAP		
3		Introduction to Data Mining, Data Exploration and Data Pre-processing		
	3.1	Data Mining Task Primitives, Architecture, KDD process, Issues in Data Mining, Applications of Data Mining in cybersecurity, healthcare, finance, marketing, education, law & government, Data Exploration: Types of Attributes, Statistical Description of Data, Data Visualization	CO3	9

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Affiliated to University of Mantala, Apprend by ALCIE & Recognized by Govt. of Maharabira)

3.:	Data Preprocessing: Descriptive data summarization, Cleaning, Integration & transformation, Data reduction, Data Discretization and Concept hierarchy generation.		
4	Data Mining Algorithms : Mining frequent patterns and associations		
4.	Market Basket Analysis, Frequent Item sets, Closed Item sets, and Association Rule, Frequent Pattern Mining, Apriori Algorithm, Association Rule Generation, Improving the Efficiency of Apriori	CO4, CO5	6
4.:	Mining Frequent Itemsets without candidate generation, Introduction to Mining Multilevel Association Rules and Mining, Multidimensional Association Rules		
5	Data Mining Algorithms : Classification and Clustering		
5.	Basic Concepts, Decision Tree Induction - ID3, Naive Bayesian Classification, Accuracy and Error measures, Evaluating the Accuracy of a Classifier: Holdout & Random Subsampling, Cross Validation, Bootstrap.	CO4, CO5	10
5.2	Types of data in Cluster analysis, Partitioning Methods (k-Means, k-Medoids), Hierarchical Methods (Agglomerative, Divisive)		
6	Spatial and Web Mining		
6.	Spatial Data, Spatial Vs. Classical Data Mining, Spatial Data Structures, Spatial mining in urban planning, public health, transportation planning and emergency response.	CO6	3
6.2	Web Mining: Web Content Mining, Web Structure Mining, Web Usage mining, Applications of Web Mining in business and banking.		
		Total	39

Text	Textbooks:				
1	Paulraj Ponniah, "Data Warehousing: Fundamentals for IT Professionals", Wiley India				
2	Han, Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann 2nd Edition				
3	M.H. Dunham, "Data Mining Introductory and Advanced Topics", Pearson Education				
Refer	References:				
1	Reema Thareja "Data warehousing", Oxford University Press 2009.				

(An Autonomous Institute Affiliated to University of Mumboi, Approved by A.I.C.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

2	Pang-Ning Tan, Michael Steinbach and Vipin Kumar, Introduction to Data Mining", Person Publisher 2nd Edition
3	Ian H. Witten, Eibe Frank and Mark A. Hall " Data Mining ", 3rd Edition Morgan Kaufmann publisher.

Internal Assessment

Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks. The Mid Term test is to be conducted when approximately 50% syllabus is completed and its duration will be one hour.

Continuous Assessment

Continuous Assessment is of **20 marks.** The rubrics for assessment will be considered on approval by the subject teachers. It should be minimum 2 or maximum 4 from the following table.

Sr. No	Rubrics	Marks				
1	Multiple Choice Questions (Quiz)	5 Marks				
2	Literature review of papers/journals	5 Marks				
3	Participation in event/ workshop/ talk / competition followed by small report and certificate of participation relevant to the subject	5 Marks				
4	Wins in the event/competition/hackathon pertaining to the course	10 Marks				
5	Case study, Presentation, group discussion, technical debate on recent trends in the said course	10 Marks				
6	Project based Learning and evaluation / Extra assignment / Question paper solution	10 Marks				
7	NPTEL/ Coursera/ Udemy/any MOOC Certificate course for 4 weeks or more	10 Marks				
8	Content beyond syllabus presentation	10 Marks				
9	Creating Proof of Concept	10 Marks				
10	Mini Project / Extra Experiments/ Virtual Lab	10 Marks				
11	Peer Review and participation	5/10 Marks				
	*For sr.no.7, the date of certification exam should be within the term and in case a student is unable to complete the certification, the grading has to be done accordingly.					

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute AllElated to University of Manthai, Approved by ALCIE & Recognized by Gord. of Maharashter)

Indirect Ass	Indirect Assessment					
1	Mock Viva/Practical					
2	cill Enhancement Lecture					
3	Extra Assignments/lab/lecture					
End Semest	er Theory Examination:					
1	Question paper will be of 60 marks					
2	Question paper will have a total of five questions					
3	All questions have equal weightage and carry 20 marks each					
4	Any three questions out of five need to be solved.					

Useful Digi	Useful Digital Links						
1	https://onlinecourses.nptel.ac.in/noc21_cs06/preview						
AI Tools							
1	https://www.coursera.org/specializations/data-mining						
2	https://topai.tools/usecases/data-warehousing						
3	https://onlinecourses.nptel.ac.in/noc21_cs06/preview						
Case Studies							
1	https://www.trianz.com/experiences/enterprise-data-warehouse-case-studies-collection						
2	https://estuary.dev/real-time-data-warehouse-examples/						
3	https://www.bizprospex.com/understanding-data-mining-with-the-help-of-case-studies-on- data-mini						
4	https://dataforest.ai/blog/practical-data-warehousing-successful-cases						
5	https://www.datamation.com/big-data/data-mining-use-cases/						

(An Autonomous Institute Affiliated to University of Mamboi, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtm)

Department of Computer Engineering

DATA WAREHOUSING AND MINING (Lab)

Course Code	Course Name		ching Scheme aching Hours)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW&PR	Tut	Total	
NCMPCL52	Data Warehousing and Mining Lab	-	2	-	-	1	-	1	
	Course Name	Examination Scheme							
Course			Theory	Exam	Practical				
Code		Internal A	ssessment	End Sem		Term Work	Ferm Work & T Oral		
		Mid-Term Test	Continuous Assessment	Exam	(in Hrs)		Orai		
NCMPCL52	Data Warehousing and Mining Lab	-	-	-	-	25	-	25	

Lab O	Lab Objectives:						
1	Understand how to build a data warehouse.						
2	Learn about the data sets and data preprocessing.						
3	Demonstrate the working of algorithms for data mining tasks such Classification, clustering, Association rule mining & Web mining						
4	Explore open source software (like Orange / Tableau etc.) to perform data mining tasks.						
Lab O	Putcomes: At the end of the course, the students will be able to						
1	Design data warehouses and perform various OLAP operations.						
2	Apply relevant preprocessing techniques on datasets and implement data mining approaches like classification.						
3	Explore and apply clustering algorithms to datasets, and utilize open-source software for executing data mining tasks.						

4

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology

(An Autonomous Institute Affiliated to University of Mambai, Approvad by A.I.C.T.E.& Recognized by Govt. of Maharashim)

Department of Computer Engineering

Implement Association rule & web mining algorithm.

Sr No.	List of Experiments	LO
1	Case study on building Data warehouse/ Data Mart : Write Detailed Problem statement and design dimensional modeling (creation of star and snowflake schema)	LO1
2	Design the dimension and fact tables for the chosen case study	LO1
3	Implementation of OLAP operations: Slice, Dice, Rollup, Drill down and Pivot based on chosen case study.	LO1
4	Execution of Bayesian algorithm for binary classification	LO2
5	Implementation of Data Discretization (any one) - Apply techniques like Z-score normalization, Min-Max scaling before clustering.	LO2, LO3
6	Implementation of Data Visualization (using Tableau) - Use the Hopkins statistic or visual methods (e.g., pairplots) to assess whether the data has a natural clustering tendency	LO2, LO3
7	Perform data Pre-processing task and demonstrate Classification, Clustering, Association algorithm on data sets using data mining tool (Python Matplotlib)	LO2, LO3
8	Consider raw data, apply preprocessing and classify using ID3	LO2
9	Implementation of Clustering algorithm (K-means/K-medoids)	LO3
10	Implementation of Association Rule Mining algorithm (Apriori / FP Growth)	LO4

Term V	Term Work					
1	Term work should consist of at least 8 experiments.					
2	The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.					
3	Total 25 Marks (Experiments: 15 Marks, Assignment / Case Study: 10 Marks)					

(An Autonomous Institute Affiliated to University of Mamboi, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtm)

Department of Computer Engineering

COURSE NAME: CRYPTOGRAPHY AND SYSTEM SECURITY

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMPC53	Cryptography and System Security	3	2	-	3	1	-	4

Course		Teaching Scheme (Teaching Hours)			Credits Assigned				
Code	Course Name	Theory	Practical	Tutoria l	Theory	TW/ PR	Tut	Total	
NCMPC53	Cryptography and System Security	03	-	-	03	-	-	03	
	Course Name	Examination Scheme							
Course		Theory			Exam	_	Practical		
Code		Internal Assessment		End	Duratio	Term	&	Total	
		Mid-Ter m Test	Continuous Assessment	Sem Exam	n (in Hrs)	Work	Oral		
NCMPC53	Cryptography and System Security	20	20	60	02	-	-	100	

Prere	Prerequisite: Computer Networks, Knowledge on number systems.						
Cours	Course Objectives						
1	To introduce system security goals, system security concepts and to explore classical encryption techniques.						
2	To explore the working principles and utilities of various cryptographic algorithms including secret key cryptography, hashes and message digests, and public key algorithms.						
3	To explore the design issues and working principles of various authentication protocols, PKI standards and various secure communication standards including PGP, IPsec, and SSL.						
4	To develop the ability to use existing cryptographic utilities to build programs for secure communication.						
5	To understand software vulnerabilities and cyber security concepts.						

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremees Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gort. of Maharashtra)

Cour	Course Outcomes: Students will be able					
1	Understand system security goals, Security services, classical encryption techniques, and apply system security concepts.					
2	Understand symmetric and asymmetric cryptography, compare and apply different encryption and decryption techniques to solve problems related to confidentiality and authentication.					
3	Understand and analyze the symmetric public-key cryptography, RSA and other public-key cryptosystems ,the key distribution and management schemes.					
4	Apply different message digest techniques to verify integrity, design secure applications and the key distribution and management schemes.					
5	Understand network security basics, analyze different attacks on networks and evaluate the performance of firewalls and security protocols like SSL, IPSec, and PGP.					
6	Understand various software vulnerabilities, cyber crimes and cyber security.					

Module		Content					
	Basics	of Cryptography					
	1.1	Introduction to cryptography Security Goals, Attacks, Services and Mechanisms, Types of Cryptography-Symmetric Key, Asymmetric Key					
1	1.2	Mathematics for Cryptography Integer Arithmetic, Euclidean Algorithm, Modular Arithmetic, Modular Inverses, Fermat's and Euler's theorem	CO1	08			
	1.3	Classical Encryption techniques Symmetric cipher model, mono-alphabetic and polyalphabetic substitution techniques: Vigenere cipher, playfair cipher, Hill cipher, transposition techniques: keyed and keyless transposition ciphers					
	Sym	Symmetric and Asymmetric key Cryptography					
2	2.1	Block cipher principles, block cipher modes of operation, DES, Double DES, Triple DES, Advanced Encryption Standard (AES), Introduction to Stream Ciphers		08			

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Affiliated to University of Manthai, Approved by ALCILE & Recognized by Govt. of Maharadata)

	2.2	Public key cryptography: Principles of public key cryptosystems- The RSA Cryptosystem.		
	Cry			
2	3.1	Cryptographic hash functions, Properties of secure hash function, MD5, SHA-1, MAC, HMAC, CMAC.	CO3	06
3	3.2	3.2 Key Distribution Techniques: Symmetric Key Distribution: KDC, Needham-schroeder protocol. Kerberos: Kerberos Authentication protocol, Symmetric key agreement: Diffie Hellman, Public key Distribution: Digital Certificate: X.509		06
	Aut	hentication Protocols & Digital Signature Schemes		
4	4.1	User Authentication, Entity Authentication: Password Base, Challenge Response Based	CO4	04
	4.2	Digital Signature, Attacks on Digital Signature, Digital Signature Scheme: RSA		
	Netv	CO5	08	
	5.1			
5	5.2			
	5.3	Internet Security Protocols: PGP, SSL, IPSEC. Network security: IDS, Firewalls		
	Info	CO6	05	
6	6.1 Software Vulnerabilities: Buffer Overflow, Format string, cross-site scripting, SQL injection, Malware: Viruses, Worms, Trojans, Logic Bomb, Bots, Rootkits.			
	6.2	Cyber Security Classifications of Cyber Crimes, Tools and Methods –Password Cracking, Keyloggers, Spywares,SQL Injection ,Network Access Control.		
		То	tal	39

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Allfilated in University of Mantesi, Approved by ALCIE & Recognized by Govt. of Maturashtra)

Textbook	s
1	William Stallings, "Cryptography and Network Security, Principles and Practice", 6th Edition Pearson Education, March 2013
2	Behrouz A. Ferouzan, "Cryptography & Network Security", Tata McGraw Hill
3	Behrouz A. Forouzan & Debdeep Mukhopadhyay, "Cryptography and Network Security" 3rd Edition, McGraw Hill
4	Nina Godbole, Sunit Belapure, "Cyber Security: Understanding Cyber crimes, Computer Forensics and Legal Perspectives", First Edition, Wiley India, 2011.
5	Open Source Intelligence Methods and Tools: A Practical Guide to Online Intelligence by Nihad A. Hassan (Author), Rami Hijazi (Author)
Reference	e Books
1	Bruce Schneier, "Applied Cryptography, Protocols Algorithms and Source Code in C", Second Edition, Wiley.
2	Atul Kahate, "Cryptography and Network Security", Tata McGraw-Hill Education, 2003.
3	Charles Pfleeger, Shari Pfleeger, Jonathan Margulies, "Security in Computing", Fifth Edition, Prentice Hall, New Delhi, 2015.
4	Eric Cole, "Network Security Bible", Second Edition, Wiley, 2011.
5	OSINT Techniques - Resources for Uncovering Online Information - 10th Edition (2023) by Michael Bazzell
Useful Lii	nks
Resources	s
1	https://onlinecourses.nptel.ac.in/noc22_cs90/preview_
2	https://onlinecourses.nptel.ac.in/noc22_cs03/preview_
3	https://cse29-iiith.vlabs.ac.in/
4	https://threema.ch/press-files/2_documentation/cryptography_whitepaper.pdf
5	<u>http://surl.li/uhndp</u>
6	https://netleon.com/blog/cryptography-real-world-application/
AI Tools	
1	https://www.maltego.com/

1

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology

(An Autonomous Institute Affiliated to University of Mambai, Approved by A.LC.T.E.& Recognized by Govt. of Maharashim)

Department of Computer Engineering

2	https://www.recordedfuture.com/threat-intelligence-101/tools-and-technologies/osint-tools
3	https://www.kali.org/tools/spiderfoot/
Case Studi	ies

https://www.kroll.com/en/insights/publications/cyber/case-studies

Interna	l Assessment	
	nent consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 ma	
	st is to be conducted when approximately 50% syllabus is completed and its duration will	l be one hour.
	uous Assessment	
	ous Assessment is of 20 marks. The rubrics for assessment will be considered upon app teachers. It should be a minimum of 2 or a maximum of 4 from the following table	roval by the
Sr. No.	Rubrics	Marks
1	Multiple Choice Questions (Quiz)	5
2	Literature review of papers/journals	5
3	Participation in event/workshop/talk/competition followed by a small report and certificate of participation relevant to the subject	5
4	Wins in the event/competition/hackathon pertaining to the course	10
5	Case study, Presentation, group discussion, technical debate on recent trends in the said course	10
6	Project-based Learning and evaluation / Extra assignment / Question paper solution	10
7	NPTEL/ Coursera/ Udemy/any MOOC Certificate course for 4 weeks	10
8	Content beyond syllabus presentation	10
9	Creating Proof of Concept	10
10	Mini Project / Extra Experiments/ Virtual Lab	10
11	GATE Based on Assignment tests/Tutorials etc	10
12	Peer Review and participation	5/10
comple	no.7, the date of the certification exam should be within the term, and in case a studen te the certification, the grading has to be done accordingly.	t is unable to
Indirec	t Assessment	
1	Quiz	

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremees Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Govt. of Maharabitra)

2	Skill Enhancement Lecture
3	Extra Assignments/lecture
End Se	mester Theory Examination
1	Question paper will be of 60 marks
2	Question paper will have a total of five questions
3	All questions have equal weightage and carry 20 marks each
4	Any three questions out of five need to be solved.

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autorement Institute of Material Approach by ALCIER Recognized by Gord. of Materiation)

Dependence of Computer Englander

Department of Computer Engineering

CRYPTOGRAPHY AND SYSTEM SECURITY (Lab)

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMPCL53	Cryptography and System Security Lab	-	02	-	-	01	-	01
	Course Name	Examination Scheme						
Course		Theory			Exam			Total
Code		Internal Assessment		End	Durati on	on lerm &		
		Mid-Term Test	Continuous Assessment	Sem Exam	(in Hrs)	WOLK	Oral	
NCMPCL53	Cryptography and System Security Lab	-	-	-	-	25	-	25

Prerequisite: Computer Network, Number Theory						
Lab Objec	Lab Objectives:					
1	1 To apply various encryption techniques					
2	2 To study and implement various security mechanism					
3	To explore the network security concept and tools					
4	To incorporate ethical usage of OSINT tools					
Lab Outcomes: At the end of the course, the students will be able to						
1	To apply traditional and advanced encryption techniques					

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremees Institute Affiliated to University of Mantesia, Approved by ALCIE & Recognized by Govt. of Maturashtra)

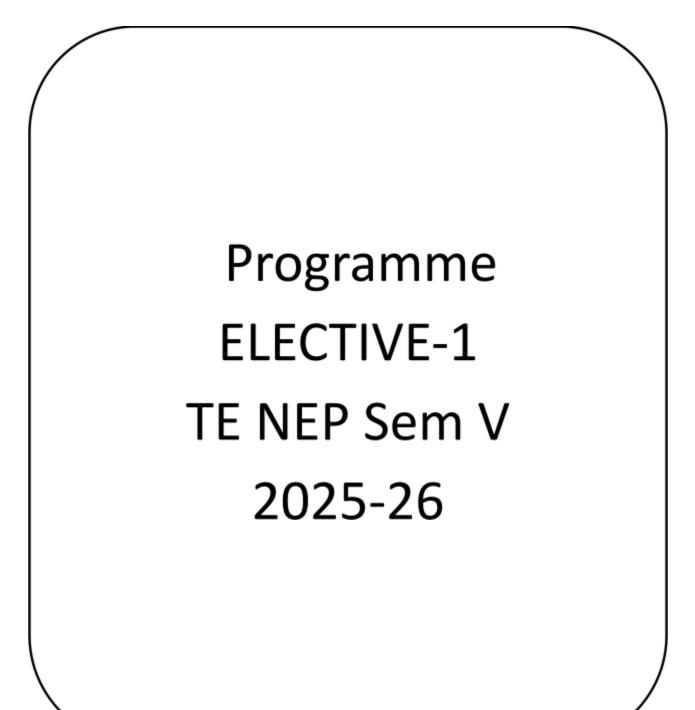
2	To study and implement various security mechanisms
3	To study and analyze cryptographic algorithms
4	To analyse images and data using forensic tools
5	To study file recovery, carving, log, and timeline analysis
6	To explore network forensic analysis

Suggested Experiments: Students are required to complete at least 10 experiments.							
Sr. No.	List of Experiment	LOs					
1	Design and Implementation using Substitution ciphers: Caesar Cipher, Auto Key Cipher, PlayFair Cipher	LO1					
2	Design and Implementation using Transposition Ciphers: Keyed Transposition Cipher, Keyless Transposition Cipher	LO1					
3	(i) Implementation and analysis of the RSA cryptosystem.(ii) Implementation of the Diffie-Hellman key exchange algorithm	LO2					
4	For varying message sizes, test the integrity of the message using MD-5, SHA-1, and analyze the performance of the two protocols. Use crypt APIs.	LO3					
5	Analysis of forensic images using open source tools: FTK Imager, Autopsy, Sleuth Kit(TSK), Volatility	LO4					
6	Explore forensics tools in Kali Linux for acquiring, analyzing, and duplicating data. dd- For bit-by-bit disk imaging and dcfldd	LO4					
7	Perform file recovery and carving using Foremost, Scalpel, and Photorec	LO5					
8	a. Perform Log and timeline analysis using Plaso and Timesketchb. Generate a Timeline Report Using Autopsy	LO5					
9	Perform Network forensics using Network Miner and Wireshark	LO6					

(An Autonomous Institute Affiliated to University of Mumbui, Approved by A.I.C.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

10 Explore USB Device Forensics using USBDeview and USB Detective


LO6

Usefu	Links
1	https://www.kali.org/tools/theharvester/
2	https://www.kali.org/tools/spiderfoot/
3	https://www.kali.org/tools/gospider/
4	https://seon.io/try-for-free/
5	https://help.shodan.io/command-line-interface/0-installation
6	https://www.kali.org/tools/recon-ng/
7	https://www.kali.org/tools/metagoofil/
Virtua	al Lab
1	https://cse29-iiith.vlabs.ac.in/List%20of%20experiments.html
AI Too	ls
1	Deep Exploit <u>https://www.oreilly.com/library/view/mastering-machine-learning/9781788997409/5b2c984f-788d</u> <u>-49e8-817f-40973dc992e0.xhtml</u>
2	GyoiThon-https://github.com/gyoisamurai
3	Sn1per (Community Edition)- <u>https://sn1persecurity.com/wordpress/</u>
4	Cuckoo Sandbox (AI-enhanced setups) -https://github.com/cuckoosandbox/cuckoo

Term Work:1Term work should consist of 10 experiments.2Journal must include at least 2 assignments on content of theory and practical of "Cryptography and System Security"3The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.4Total 25 Marks (Experiments: 15-marks, Term work Assessment: 10-marks)

mous Institute Affiliated to University of Mamboi, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashim) Department of Computer Engineering

(An Autonomous Institute Affiliated to University of Mamboi, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtm)

Department of Computer Engineering

COURSE NAME: DATA ENGINEERING

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMPE51	Data Engineering	3	2	-	3	1	-	4

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
	Course Mame	Theory	Practical	Tutorial	Theory	TW/P R	Tut	Total
NCMPE51	Data Engineering	3		-	3		-	3
		Examination Scheme						
Course		Theory			Exam		Practical	
Code	Course Name	Internal	Assessment	End	Duration	Term	&	Total
Cour		Mid-Term Test	Continuous Assessment	Sem Exam	(in Hrs)	Work	Oral	Totai
NCMPE51	Data Engineering	20	20	60	2	-	-	100

Prerequisite: Discrete Structures, DBMS, Java/Python

Course Objectives					
1	Understand the core concepts and principles of Data Engineering.				
2	Understand various data storage and retrieval technologies.				
3	Learn to design and implement stream and batch data processing pipelines.				
4	Design applications using Apache Spark for big data processing and machine learning.				
5	Design data pipeline orchestration and cloud-based data engineering applications.				
6	Understand the importance of data quality, security, and compliance in data engineering.				
Course Outcomes: Students will be able to					
1	Understand the principles of a Data Engineering				
	Work with various data sources and storage systems.				

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Affiliated to University of Mantala, Apprend by ALCIE & Recognized by Govt. of Maharabira)

2	
3	Design, build, and deploy both batch and stream data processing pipelines
4	Design and implement algorithms using Apache Spark for big data analysis and machine Learning tasks
5	Understand cloud-based data engineering services and their applications
6	Apply Data engineering principles to design and implement real world application

Module	Content			Hours
	Foundations of Data Engineering			
	1.1	Introduction to Data Engineering: Role, importance, and challenges.Data Engineering vs. Data Science vs. Data Analytics.		
1	1.2	Data Lifecycle: Ingestion, storage, processing, analysis, and visualization.	CO1	03
	1.3	Python for Data Engineering: Fundamentals, libraries (Pandas, NumPy)		
	Data Storage & Retrieval			
2	2,1	Data Scraping and Storage techniques (text, audio, video, image data). Data Visualization fundamentals: PowerBI, Tableau .	CO2	08
	2,2	Relational Databases: SQL, Database Design.NoSQL databases: Types (Document, Key-Value, Graph), MongoDB ,.Graph Databases: Neo4j, Cypher query language, graph algorithms		
	Stream Data Processing			
	3.1	Introduction to Stream Data Processing: Concepts, Algorithms.		0.0
3	3.2	Stream Processing with Apache Flink: Data Streams, Windowing, Transformations.	- CO3	08
	3.3	Distributed Data Processing Fundamentals: MapReduce, Hadoop Ecosystem.		

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Affiliated to University of Manthai, Approved by ALCILE & Recognized by Govt. of Maharadata)

	Big Da	ata with Spark		
4	4.1	Distributed Data Processing with Spark: RDDs (Resilient Distributed Datasets)		
	4.2	Functional Programming in Spark: Transformations, Actions.SparkSQL and DataFrames: Data Manipulation, SQL on Spark.	CO4	06
	4.3	Machine Learning with MLlib: Common Algorithms, Model Training.Developing and Deploying Spark Applications.		
	Data I	Pipelines & Orchestration		
5	5.1	Data Pipeline Orchestration: Concepts, Tools (Airflow ,Luigi, Prefect).		
	5.2	Building a basic data pipeline: Ingestion, Transformation, Loading, Monitoring and Logging	CO5	04
	5.3	Cloud Services for Data Engineering: AWS, Azure, GCP (overview). Snowflake: Data Warehousing, Data Lakes, Data Engineering. , Case Study		
	Data (Governance and Security		
6	6.1	Data Governance Frameworks	CO6	10
	6.2	Data Security Best Practices, Encryption, Access Control Compliance (GDPR, HIPAA)		
		То	tal	39

Textboo	Textbooks			
1	"Designing Data-Intensive Applications" by Martin Kleppmann			
2	"Data Engineering Cookbook" by Andreas Kretz			
3	"Fundamentals of Data Engineering" by Joe Reis and Matt Housley			
4	"Spark: The Definitive Guide 'by Matei Zaharia, Bill Chambers, and Tathagata Das			
Referen	ces			
1	"Graph Algorithms: Practical Examples in Apache Spark & Neo4j", by Aleksa Vukotic, Nicki Watt, Tareq Abedrabbo			
2	"Data Pipelines with Apache Airflow" by Bas P. Harenslak and Julian Rutger de Ruiter			
3	"Learning Amazon Web Services (AWS): A Hands-On Guide to the Fundamentals of AWS Cloud ", Mark Wilkins			
4	"Advanced Analytics with Spark" by Sandy Ryza, Uri Laserson, Sean Owen, and Josh Wills			

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Affiliated to University of Mantal, Apprend by ALCIE & Recognized by Govt. of Maharabira)

Department of Computer Engineering

Useful Links

Userui Links			
Resource	Resources		
1	https://kafka.apache.org/		
2	https://airflow.apache.org/		
3	https://nifi.apache.org/		
4	https://spark.apache.org/		
5	https://hadoop.apache.org/		
6	https://flink.apache.org/		
7	https://azure.microsoft.com/		
AI Tools			
1	DeepCode AI AI Code Review AI Security for SAST Snyk AI Snyk		
2	GitHub Copilot · Your AI pair programmer		
3	TFX ML Production Pipelines TensorFlow		
4	Dataiku The Universal AI Platform [™]		
Industry .	Articles		
1	https://www.datacamp.com/blog/category/data-engineering		
2	https://www.dataengineeringdigest.com/		
Case Stud	lies		
1	https://indatalabs.com/resource/data-engineering-case-studies		
2	https://cookbook.learndataengineering.com/docs/05-CaseStudies/		

Internal As	Internal Assessment				
	consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 mar				
Term test is	to be conducted when approximately 50% syllabus is completed and its duration will	be one hour.			
Continuous	Continuous Assessment				
	Continuous Assessment is of 20 marks. The rubrics for assessment will be considered upon approval by the subject teachers. It should be a minimum of 2 or a maximum of 4 from the following table				
Sr. No.	Rubrics	Marks			
1	Multiple Choice Questions (Quiz)	5			

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Affiliated to University of Manthai, Approved by ALCILE & Recognized by Govt. of Maharadata)

2	Literature review of papers/journals	5		
3	Participation in event/workshop/talk/competition followed by a small report and certificate of participation relevant to the subject			
4	Wins in the event/competition/hackathon pertaining to the course	10		
5	Case study, Presentation, group discussion, technical debate on recent trends in the said course	10		
6	Project-based Learning and evaluation / Extra assignment / Question paper solution	10		
7	NPTEL/ Coursera/ Udemy/any MOOC Certificate course for 4 weeks	10		
8	Content beyond syllabus presentation	10		
9	Creating Proof of Concept	10		
10	Mini Project / Extra Experiments/ Virtual Lab	10		
11	GATE Based on Assignment tests/Tutorials etc	10		
12	Peer Review and participation	5/10		
complete	0.7, the date of the certification exam should be within the term, and in case a student the certification, the grading has to be done accordingly.			
1	Quiz			
2	Skill Enhancement Lecture			
3	Extra Assignments/lecture			
End Seme	ester Theory Examination			
1	Question paper will be of 60 marks			
2	Question paper will have a total of five questions			
3	All questions have equal weightage and carry 20 marks each			
4	Any three questions out of five need to be solved.			

(An Autonomous Institute Affiliated to University of Mambai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

DATA ENGINEERING (Lab)

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Course Code		Theory	Practical	Tutoria l	Theory	TW/PR	Tut	Total
NCMPEL51	Data Engineering Lab		2	-	-	1	-	1
	Course Name	Examination Scheme						
Course		Theory			Exam		Practi	
Code		Internal A Mid-Ter m Test	Assessment Continuous Assessment	End Sem Exam	Duration (in Hrs)	Work &	cal & Oral	Total
NCMPEL51	Data Engineering Lab	- -	-	-	-	25	-	25

Prereq	Prerequisite: Discrete Structures, DBMS, Java/Python		
Lab Ol	Lab Objectives:		
1	Understand the fundamental concepts and principles of Data Engineering, including data models, data governance, and the data lifecycle.		
2	Gain practical experience with diverse data storage and retrieval technologies like RDBMS, NOSQL Databases etc.		
3	Develop the ability to design, implement batch and real-time data processing pipelines		
4	Understand various Apache Spark concepts for scalable data processing		
5	Understand data pipeline orchestration and cloud-based data engineering		
6	6 Acquire knowledge of data quality, security, and compliance in building robust data engineering solutions		
Lab Oi	Lab Outcomes: At the end of the course, the students will be able to		

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Affiliated to University of Manthai, Approved by ALCILE & Recognized by Govt. of Maharadata)

Prereq	Prerequisite: Discrete Structures, DBMS, Java/Python			
1	Explain the core principles and concepts of Data Engineering and the data lifecycle.			
2	Effectively interact with and manage data from various sources and storage systems			
3	Design and implement stream and batch data processing pipelines.			
4	Utilize Apache Spark for efficient processing and analysis of large-scale datasets			
5	Use data pipeline orchestration and cloud-based data engineering tools.			
6	Apply data engineering principles to design and implement solutions for real-world data challenges, considering data quality, security, and compliance.			

Suggested Experiments: Students are required to complete at least 10 experiments.					
Star (*)	Star (*) marked experiments are compulsory.				
Sr. No.	Title of Experiment	LO's			
1*	Data Acquisition and Initial Processing with Python: Extract data from diverse sources (CSV, JSON, REST APIs, relational databases). Perform basic data cleaning, transformation (e.g., filtering, renaming, type casting), and loading into a suitable data structure (Pandas DataFrame).	LO 1			
2*	Interactive Data Visualization with PowerBI/Tableau: Connect to various data sources, create interactive charts and dashboards to explore data patterns, and derive insights.	LO2			
3*	NoSQL Database (MongoDB): Data Modeling and CRUD Operations: Design document schemas, perform CRUD operations, and explore querying techniques in MongoDB.	LO 2			
4*	Graph Database (Neo4j): Network Data Modeling and Analysis: Model relationships using nodes and edges, load data into Neo4j, and perform graph traversals and analysis using Cypher queries.	LO2			
5*	Real-time Stream Processing with Apache Flink (or Kafka Streams): Develop a simple application to ingest, process, and analyze a simulated real-time data stream (e.g., sensor data, clickstream data).	LO3			
6*	Scalable Data Processing with Spark RDDs: Implement fundamental Spark RDD operations (map, filter, reduce, aggregate) on a large synthetic or publicly available dataset.	LO4			

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Affiliated to University of Mantal, Apprend by ALCIE & Recognized by Govt. of Maharabira)

7	Data Manipulation and Querying with Spark SQL and DataFrames: Perform SQL-like queries and data transformations using Spark SQL and DataFrames for efficient data analysis.	LO4
8*	Machine Learning with Spark MLlib: Train and evaluate a basic machine learning model (e.g., linear regression, logistic regression, decision tree) using Spark MLlib on a relevant dataset.	LO 4
9*	Building a Data Pipeline with Apache Airflow: Design and implement a simple data pipeline to automate a data extraction, transformation, and loading (ETL) process.	LO 3L O5
10*	Build a Conversational BI application for (retail, healthcare, finance etc)	LO 6
11	Implementing Data Quality Checks: Design and implement data quality checks within a data pipeline to identify and handle inconsistencies, errors, and missing values.	LO6

Usefu	Useful Links			
1	https://kafka.apache.org/			
2	https://airflow.apache.org/			
3	https://nifi.apache.org/			
4	https://spark.apache.org/			
5	https://hadoop.apache.org/			
6	https://flink.apache.org/			
Virtu	ial Lab			
1	https://www.snowflake.com/en/resources/webinar/virtual-hands-on-lab/?tags=region%2Fapj			
2	https://nebulacloud.ai/connect/blogs/introducing-bi-and-data-analytics-lab-as-a-service			
AI To	ols			
1	https://github.com/features/copilot			
2	https://www.dataiku.com/			

(An Autonomous Institute Affiliated to University of Munitor, Approved by A.LC.T.E.& Recognized by Govt. of Maharashim) Department of Computer Engineering

3 https://snyk.io/platform/deepcode-ai/

Ter	Term Work:			
1	Term work should consist of 10 experiments.			
2	Journal must include at least 2 assignments on content of theory			
3	The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.			
4	Total 25 Marks (Experiments: 15-marks, Term work Assessment: 10-marks)			

(An Autonomous Institute Affiliated to University of Mamboi, Approved by A.I.C.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

COURSE NAME: DESIGN THINKING

Course Code	Course Name		eaching Scher Feaching Hou		Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMPE52	Design Thinking	3	2	-	3	1	-	4

Course Code	Course Name		aching Scheme eaching Hours			Credits Assigned			
Course Code NCMPE52		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total	
NCMPE52	Design Thinking (Theory)	3	-	-	3	-	-	3	
				Exam	ination Scl	neme			
Course	Course Name		Theory		Exam	T W	Practical	T- 4 - 1	
Code		Internal	Assessment	End Som	Duration (in Hrs)	Term Work	& Oral	Total	
		Mid-Term Test	Continuous Assessment	End Sem Exam	(111 1118)		Urai		
NCMPE52	Design thinking (Theory)	20	20	60	2	25	-	100	

Cours	e Prerequisite: Analytical Skills and Reasoning Skills						
Cours	Course Objectives						
1	To make Learner aware about systematic Design Process						
2	To understand various phases of Design Thinking						
3	To nurture Creative skills						
4	To effectively apply the design Techniques towards Product Development						
Cours	se Outcomes						
1	To understand Design Thinking and its need						
2	To adopt Design Thinking for Innovation						
3	To study and analyse various phases in Design Thinking						
4	To understand Challenges in Design						
5	Test and Implement Design						

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.LC.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

6 To document the Design Process

Module		Content	CO	Hou
	Introd	luction to Design thinking		rs
	1.1	Various Tools used since ancient Years, Stoneage, Wooden age, iron age etc, Invention of Liver, wheel. Need for Design. Various Design methodologies: Documentation, Free hand Sketching,Engineering Drawing principles, Geometrical Parameters. Various Tools and Techniques. Design principles for Software, User Interface. Market Research, Goal Oriented Design.		
1	1.2	Need for Design Thinking. Case Study of Problems that can be solved by Design Thinking. Benefits of Design Thinking To Society, Benefits of Design Thinking to Organization to Benefits of Design Thinking to Technology. Design	CO1	08
	1.3	Overview of Design Thinking: History, Importance, and Applications.Design Thinking Mindset: Empathy, Curiosity, and Creativity.Phases of Design Thinking: Empathize, Define, Ideate, Prototype, Test.Real-life Case Studies (Tech Industry Examples). Activities: Brainstorming exercises using Miro or MURAL. Empathy mapping activity for user understanding.		
	Desig	n Thinking and Innovation		
	2.1	Designing products and Services. Product Design, Service Design, product V/s Services. Design Thinking v/s Traditional Thinking. Design Thinking a Non linear process. StoryBoard Template and Paper Templates.		
2	2.2	Innovation Definition. The newness Matrix, Product Innovation process Innovation, Service Innovation, Paradigm Innovation, Business Model, Frugal and Open innovation, Relation between Design Thinking, Business, innovation and Innovation management.	CO2	10
	2.3	Innovation V/s Invention. Continuous v/s Discontinuous Innovation. Reasons for Discontinuity. Innovation Cycle. Various Innovative Ideas for Day to Day Business: Documentation, Survey, Marketing.		
3	Desig	n Thinking process: Phase 1 Empathize	CO3	06

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Affiliated to University of Manthai, Approved by ALCILE & Recognized by Govt. of Maharadata)

3.1 Don Norman's Design principles. Research your users' needs. (User Interview Techniques). Personna Identification. Human Centered approach. Human properties to be considered in Design. Personna, Stakeholder analysis, Type of Users; Bell Curve. Design Thinking process Phase 2 Ideation Problem Definition: How to Frame a Problem Statement. Define: state your users' needs and problems.Problem Definition, Multi stakeholder and Multidisciplinary Approach. Mistakes made by designers. Pain Point identification. Stakeholder Mapping. Preparing Questionnaire. Case study of Customer care services and Successful Stories. 3.2 Brainstorming, SCAMPER, and Mind Mapping. 9 Prioritization Frameworks: MoSCoW, Impact-Effort Matrix. 9 Design Thinking Process Phase 3 Ideate: 4 A.1 Challenge assumptions and create ideas.Pillars of Ideation : Creativity and Abductive Logic. 4 4.2 Skills for Ideation Creative Skills and Questioning Skill Ideation method. Divergent Phase 4 4.2 Skills for Ideation Assthetics, Iterative Method. 5 5.1 Start to create solutions. Why Prototype is mandatory. Visual Communication, Assthetics, Iterative Method. 5 5.2 Skills required in prototyping Sketching Drawing, paper model, tool handling. CO5 6 Testing and Implementation CO6 O4					
4 A.1 Challenge assumptions CO4 06 4 4.2 Skills for Ideation Creative Skills and Questioning Skill Ideation imethod. Divergent Phase CO4 06 5 5.2 Skills required in prototyping Sketching Drawing, paper model, tool handling. CO4 05 5 5.2 Skills required in prototyping Sketching Drawing, paper model, tool handling. CO5 05		3.1	Interview Techniques). Personna Identification. Human Centered approach. Human properties to be considered in Design. Personna,		
3.3 Appliances Designs, Other Innovative schemes adopted in various Applications Design Thinking Process Phase 3 Ideate: 4.1 Challenge assumptions and create ideas.Pillars of Ideation : Creativity and Abductive Logic. 4 4.2 4.1 Challenge assumptions and create ideas.Pillars of Ideation : Creativity and Abductive Logic. 4 4.2 4.2 Skills for Ideation Creative Skills and Questioning Skill Ideation method. Divergent Phase 4.3 Brainstorming and Brainwriting, Conceptual Modelling Convergent phase : Why and How Technique, Prioritise. Design Thinking Phase 4 Prototype: 5.1 5.1 Start to create solutions.Why Prototype is mandatory. Visual Communication, Aesthetics, Iterative Method. 5 5.2 5.3 Show Test and feedback. Storyboard Technique. Problems discussion using Storyboard, Solution using Storyboard.Redesigning of Process. 05		3.2	 Phase 2 Ideation Problem Definition: How to Frame a Problem Statement. Define: state your users' needs and problems.Problem Definition, Multi stakeholder and Multidisciplinary Approach. Mistakes made by designers. Pain Point identification. Stakeholder Mapping. Preparing Questionnaire. Case study of Customer care services and Successful Stories. Brainstorming, SCAMPER, and Mind Mapping. 		
4.1 Challenge assumptions and create ideas.Pillars of Ideation : Creativity and Abductive Logic. 06 4 4.2 Skills for Ideation Creative Skills and Questioning Skill Ideation method. Divergent Phase CO4 06 4.3 Brainstorming and Brainwriting, Conceptual Modelling Convergent phase : Why and How Technique, Prioritise. CO4 06 5 5.1 Start to create solutions.Why Prototype is mandatory. Visual Communication, Aesthetics, Iterative Method. CO5 05 5 5.2 Skills required in prototyping Sketching Drawing, paper model, tool handling. CO5 05 5.3 Show Test and feedback. Storyboard Technique. Problems discussion using Storyboard, Solution using Storyboard.Redesigning of Process. CO5 05		3.3	Appliances Designs, Other Innovative schemes adopted in various		
44.1Creativity and Abductive Logic.44.2Skills for Ideation Creative Skills and Questioning Skill Ideation method. Divergent PhaseCO4064.3Brainstorming and Brainwriting, Conceptual Modelling Convergent phase : Why and How Technique, Prioritise.CO4065Design Thinking Phase 4 Prototype: Start to create solutions. Why Prototype is mandatory. Visual Communication, Aesthetics, Iterative Method.CO50555.2Skills required in prototyping Sketching Drawing, paper model, tool handling.CO5055.3Show Test and feedback. Storyboard Technique. Problems discussion using Storyboard, Solution using Storyboard.Redesigning of Process.CO505		Desig	n Thinking Process Phase 3 Ideate:		
4.2 method. Divergent Phase 4.3 Brainstorming and Brainwriting, Conceptual Modelling Convergent phase : Why and How Technique, Prioritise. Design Thinking Phase 4 Prototype: 5.1 Start to create solutions. Why Prototype is mandatory. Visual Communication, Aesthetics, Iterative Method. 5 5.2 Skills required in prototyping Sketching Drawing, paper model, tool handling. 5.3 Show Test and feedback. Storyboard Technique. Problems discussion using Storyboard, Solution using Storyboard.Redesigning of Process. 05		4.1			
4.3 Convergent phase : Why and How Technique, Prioritise. Design Thinking Phase 4 Prototype: 5.1 Start to create solutions. Why Prototype is mandatory. Visual Communication, Aesthetics, Iterative Method. 5 5.2 Skills required in prototyping Sketching Drawing, paper model, tool handling. 5.3 Show Test and feedback. Storyboard Technique. Problems discussion using Storyboard, Solution using Storyboard.Redesigning of Process. 05	4	4.2		CO4	06
5.1 Start to create solutions. Why Prototype is mandatory. Visual Communication, Aesthetics, Iterative Method. 5 5.2 Skills required in prototyping Sketching Drawing, paper model, tool handling. 05 5.3 Show Test and feedback. Storyboard Technique. Problems discussion using Storyboard, Solution using Storyboard.Redesigning of Process. 05		4.3			
5 5.1 Visual Communication, Aesthetics, Iterative Method. 5 5.2 Skills required in prototyping Sketching Drawing, paper model, tool handling. 05 5.3 Show Test and feedback. Storyboard Technique. Problems discussion using Storyboard, Solution using Storyboard.Redesigning of Process. 05		Desig	n Thinking Phase 4 Prototype:		
5 5.2 handling. CO5 03 5.3 Show Test and feedback. Storyboard Technique. Problems discussion using Storyboard, Solution using Storyboard.Redesigning of Process. CO5 03		5.1			
5.3 discussion using Storyboard, Solution using Storyboard.Redesigning of Process.	5	5.2		CO5	05
6 Testing and Implementation CO6 04		5.3	discussion using Storyboard, Solution using Storyboard.Redesigning		
	6	Testi	ng and Implementation	CO6	04

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Affiliated to University of Manthai, Approved by ALCILE & Recognized by Govt. of Maharadata)

6.1	Test: try your solutions out., Test Phase , Pillars of Testing Experimentation, Agility, Agile Methodology . Skills . Testing Methodology. Testing Tools and Techniques. Experiment Grid, Feedback Capturing , assumptions canvas. User acceptance Testing.	
6.2	Implementation: Implementation Functions, System Thinking. Business Logic or Business Plan, Techniques that assure security and Confidentiality. Designs with environmental and economic sustainability.	
6.3	Design Thinking for Emerging Technologies: AI, IoT, and Sustainable Solutions. Industry Use Cases and Success Stories. Integrating Design Thinking into Agile Processes. Ethical Considerations in Design Thinking.	
6.4	Prototyping and Visualization Low-Fidelity vs. High-Fidelity Prototyping, Tools for Prototyping: Sketching, Wireframing, and Digital Prototyping, Rapid Prototyping Techniques, Project Documents, Project Diary. CaseStudies on various Successful Projects.	
	Total	39

Textbo	Textbooks						
1	Design Thinking: A Framework for Applying Design Thinking in Problem Solving, First Edition, Author(s): Anuja Agarwal Cengage Group						
2	Design Thinking, Beginner's Perspective by E Balgurusammy, Bindu Vijayakumar McgrawHill Publication						
3	Galitz's Human Machine Interaction adapted by Dhananjay R. Kalbande, Prashant Kanade, Sridari Iyer wiley Publications						
Refere	nces						
1	Human Computer Interaction by Alan Dix, Janet Finlay, Gregory D Abowd, Russel Beale 3e Paerson						
2	Design of Everyday Things, Don Norman, Basic Books						
Resour	ces						
1	Design Thinking Study Guide						

(An Autonomous Institute Affiliated to University of Mumbol, Approved by A.LC.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

	https://www.nngroup.com/articles/design-thinking-study-guide/
2	Design Thinking and Product Innovation https://www.pvpsiddhartha.ac.in/dep_it/lecture%20notes/DT/unit-i.pdf
3	Design Thinking V/s Human Centered Design https://www.pvpsiddhartha.ac.in/dep_it/lecture%20notes/DT/unit-ii.pdf
AI Tools	s
1	http://www.uizard.io Turn product ideas into concepts instantly with GenAI
2	https://www.devlinpeck.com/content/ai-in-design devlinpeck
3	Use Generative AI to create Images, Videos and More. Harness the power of Artificial Intelligence to up your Social Media Marketing game. https://designs.ai/
Industr	y articles
1	TCS Design Thinking Creativity and Innovation https://www.tcs.com/who-we-are/tcs-way/article/design-thinking-center-of-excellence-improve-experiences
2	Get closer to your customers with design thinking Capgemini White Paper. https://www.capgemini.com/us-en/news/client-stories/embrace-new-ways-of-working/
Case St	udies
1	https://www.frog.co/work_CaseStudies by Capgemini
2	https://www.capgemini.com/insights/research-library/rethink-series/ ReThink A series of whitepapers on how we need to rethink sustainability

Internal Assessment

Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks. The Mid Term test is to be conducted when approximately 50% syllabus is completed and its duration will be one hour.

Continuous Assessment

Continuous Assessment is of **20 marks.** The rubrics for assessment will be considered on approval by the subject teachers. It should be minimum 2 or maximum 4 from the following table.

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremees Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Govt. of Maharabitra)

Sr. No	Rubrics	Marks						
1	Multiple Choice Questions (Quiz)	5 Marks						
2	Literature review of papers/journals	5 Marks						
3	Participation in event/ workshop/ talk / competition followed by small report and certificate of participation relevant to the subject	5 Marks						
4	Wins in the event/competition/hackathon pertaining to the course							
5	Case study, Presentation, group discussion, technical debate on recent trends in the said course	10 Marks						
6	Project based Learning and evaluation / Extra assignment / Question paper solution	10 Marks						
7	NPTEL/ Coursera/ Udemy/any MOOC Certificate course for 4 weeks or more	10 Marks						
8	Content beyond syllabus presentation	10 Marks						
9	Creating Proof of Concept	10 Marks						
10	Mini Project / Extra Experiments/ Virtual Lab	10 Marks						
11	Peer Review and participation	5/10 Marks						
	no.7, the date of certification exam should be within the term and in case a student is use the certification, the grading has to be done accordingly.	nable to						
Indirect	Assessment							
1	Mock Viva/Practical							
2	Skill Enhancement Lecture							
3	Extra Assignments/lab/lecture							
End Ser	nester Theory Examination:							
1	Question paper will be of 60 marks							
2	Question paper will have a total of five questions							
3	All questions have equal weightage and carry 20 marks each							
4	Any three questions out of five need to be solved.							

(An Autonomous Institute Affiliated to University of Mumbui, Approved by A.I.C.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

DESIGN THINKING (Lab)

Course Code	Course Name	Teaching Scheme (Teaching Hours)				Credits Assigned				
	Ivanie	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total		
NCMPEL52	Design Thinking Lab	-	2	-	-	1	-	1		
				Examin	ation Schem	e	-			
Course	Course		Theory		Exam	Ŧ	Pract			
Code	Name	Internal Mid-Ter m Test	Assessment Continuous Assessment	End Sem Exam	Duration (in Hrs)	Term Work	ical & Oral	Total		
NCMPEL52	Design Thinking lab	-	-	-	-	25	-	25		

	Prerequisite: C programming, Digital Logic and Computer Architecture, Microprocessor, Computer Networks.						
Lab C	Lab Objectives:						
1	1 To make students eligible to apply Design Thinking Skills in actual Practice						
2	2 To design system as per Users Requirements						
3	3 To apply various Traditional as well as Advance Tools (AI) for creative and innovative designs						
Lab C	Dutcomes: Students will be able to:						
1	To apply Design thinking to provide solution						
2	Provide User centric Designs						
3	To foster innovation and Creativity						
4	4 Systematic adoption of Advanced Tools and Techniques						
5	5 Evaluate and enhance the design						
6	To use design skills in day to day practice as a system developer.						

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute AllElated to University of Manthai, Approved by ALCIE & Recognized by Gord. of Maharashter)

Sr. No.	List of Experiments	LOs
1	Prepare the detailed Document for any Tool or product that you use in day to Day practice, Try to get its evolution (Eg. Adjustable Spanner, Drill Machine, Chopper, Cutter, Punching Machine, Steppler, Grater, Grinder, Peelar etc)	LO1
2	To provide a prototype for any product selected as per the users Requirement. The requirements can be identified from peers and utilize all possible Materials for design. The expected content is personna, Questionnaire and storyboard template (Prerequisite sem 2 I & E)	
3	Prepare a marketing material for the Product under consideration using any Modern Design Tool or Application and description of the Product	LO1, LO2, LO3
4	Design a GUI for a Web Application and Considering Recent trends in Technology	LO4
5	Propose a Business Model for the Product or Utility under Consideration	LO4
6	Refinement of Existing Design of a Product or a Service or Facility options : Web page, Product Interface, Product Design, Office or Living room Arena etc.	LO4, LO5
7	Formulate the Plan for Registering the Product or Service or Facility for IPR (Copyright or Patent)	LO3, LO4
8	Evaluation of Design with peers and suggest the Possible Changes.	LO3, LO4, LO5
9	Technology adoption in Design to provide feasibility to User. (CaseStudy Presentation)	LO1, LO5
10	Survey of Various Products and/or Services which are popular or trending.	LO6

Term	Term Work:				
1	Term work should consist of 10 experiments.				
2	Journal must include at least 2 assignments on content of theory				
3	The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.				
4	Total 25 Marks (Experiments: 15-marks, Term work Assessment: 10-marks)				

(An Autonomous Institute Affiliated to University of Mambai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashim)

Department of Computer Engineering

COURSE NAME: INTERNET OF EVERYTHING

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMPE53	Internet of Everything	3	2	-	3	1	-	4

Course Code	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code	Name	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMPE53	Internet of Everything	3	-	-	3	-	-	3
	Course Name	Examination Scheme						
Course			Theory		Exam	T	Pract	
Code		Internal A	Assessment	End Duration		Term	ical	Total
		Mid-Term Test	Continuous Assessment	Sem Exam	(in Hrs)	Work	& Oral	
NCMPE53	Internet of Everything	20	20	60	2	-	-	100

Prere	Prerequisite: C programming, Digital Logic and Computer Architecture, Computer Networks.				
Cours	Course Objectives				
1	To equip students with the fundamental knowledge and basic technical competence in the field of the Internet of Everything (IoE).				
2	To emphasize learning the core IoT functional stack and application layer protocols.				
3	To study and understand the different sensors, actuators, and IoT-enabling technologies and apply this knowledge to build projects.				
4	To understand data handling in IoT.				
5 To examine prototyping boards like Arduino and Raspberry Pi to develop useful projects or products.					
	Course Outcomes: After successful completion of the course, students will be able to:				

47

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremees Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gord. of Maharashan)

1	Explain the concept, architecture, and ecosystem of IoE and differentiate it from IoT.
2	Describe sensors, actuators, communication models, and data transmission protocols in IoE.
3	Illustrate the role of smart objects, communication protocols, and cloud-based integration with edge computing and security in IoE.
4	Apply data preprocessing, analytics, and visualization techniques to extract insights from IoE data using suitable tools and platforms.
5	Understand the IoT design methodology to apply to various use cases.
6	Explore the latest trends in IoE.

Module		Content	СО	Hours
	Intro			
1	1.1	Concept of IoE: Definition, evolution, and significance, IoT vs. IoE: Key differences and integration	CO1	06
	1.2	IoE Architecture: People, Process, Data, and Things		
	1.3	IoE Ecosystem: Devices, sensors, networks, and data flow.		
	Sens	ors, Actuators, and Connectivity		
	2.1	Types of Sensors in IoE: Temperature, motion, proximity, etc.		
	2.2	Actuators in IoE: Motors, valves, and smart control systems etc.		.
2	2.3	Communication Models: M2M (Machine to Machine), M2P (Machine to People), P2P (People to People)	CO2	07
	2.4	Protocols for Data Transmission: MQTT, CoAP, HTTP/HTTPS		
	2.5	Overview of sensor networks (WSN)		
	IoE	Enabling Technologies		
3	3.1	Smart Objects: A Definition, Trends in Smart Objects.	CO3	

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Affiliated to University of Manthal, Approved by ALCILE & Recognized by Govt. of Maharabita)

	3.2	Wireless Communication Protocols: Wi-Fi, Bluetooth, Zigbee, LoRaWAN.		0.7
	3.3	IoT Platforms and Tools: AWS IoT, Azure IoT, Google Cloud IoT.		07
	3.4	Edge Computing and Fog Computing in IoE, Cloud Integration for IoE Data Management.		
	3.5	IoE Security Protocols: Encryption, authentication, and secure gateways.		
	Data	Analytics and Visualization in IoE		
	4.1	IoE Data Flow and Pipeline: The end-to-end journey of data from sensors/devices to the cloud, Gateways and Aggregators, Real-Time vs. Batch Data Handling.		
4	4.2	Applications and Analytics Layer: Role and significance in the IoE architecture, Analytics vs. Control Applications, Data Analytics vs. Network Analytics.	CO4	07
	4.3	IoT Data Management and Compute Stack: Key design considerations for managing IoT data, Common data-related challenges in IoE, Compute models: Fog Computing and Edge Computing, Understanding the hierarchy of Edge, Fog, and Cloud layers		
	IoE	Design Methodology and Use Cases		
	5.1	IoE System Design Phases: Requirements gathering, architecture design, and implementation		
5	5.2	Design Considerations: Scalability, security, and interoperability		06
5	5.3	Hardware and Software Selection for IoE Systems	CO5	06
	5.4	Integration of Sensors, Actuators, and Cloud Platforms.		
	5.5	Use cases: Smart Agriculture, Environmental Monitoring, Retail and Supply Chain Management.		
	Latest Trends in IoE			
6	6.1	Industrial IoT (IIoT): Concept of IIoT and its role in smart manufacturing, Applications in predictive maintenance, asset tracking, and process automation.	CO6	06

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Affiliated to University of Manthal, Approved by ALCILE & Recognized by Govt. of Maharabita)

	Total	39
6.4	Digital Twins in IoE: Virtual representation of physical assets for monitoring and simulation, Applications in healthcare, manufacturing, and energy systems.	
6.3	5G and Edge Computing in IoE: Enhancing low latency and high-speed data transmission, Edge AI for faster processing and improved security.	
6.2	AI in IoE (AIoT): Integration of Artificial Intelligence with IoT for intelligent decision-making, AI-driven automation in healthcare, smart homes, and industry.	

Textb	Textbooks:				
1	David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton, Jerome Henry, "IoT Fundamentals – Networking Technologies, Protocols, and Use Cases for the Internet of Things", 1st Edition, Published by Pearson Education, Inc, publishing as Cisco Press, 2017.				
2	Dr Prateek Jain, Dr Archana Sharma, "Transitioning to Internet of Everything (IoE) Key Technology Applications and Recent Trends", BFC Publications, 2024.				
3	Hakima Chaouchi, "The Internet of Things - Connecting Objects to the Web", 1st Edition, Wiley, 2010.				
4	Perry Lea, "Internet of things For Architects", 1st Edition, Packt Publication, 2018				
5	Arshdeep Bahga, Vijay Madisetti, "Internet of Things – Hands-On Approach", 2nd Edition, Universities Press, 2016.				

Refer	References:			
1	Adrian McEwen & Hakim Cassimally, "Designing the Internet of Things", 1st Edition, Wiley, 2014.			
2	Donald Norris, "Raspberry Pi – Projects for the Evil Genius", 2nd Edition, McGraw Hill, 2014.			
3	Anand Tamboli ,"Build Your Own IoT Platform", 1st Edition, Apress, 2019.			

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtm)

Department of Computer Engineering

Assessment

Internal Assessment:

Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks. The Mid Term test is to be conducted when approximately 50% syllabus is completed and its duration will be one hour.

Continuous Assessment:

Continuous Assessment is of 20 marks. The rubrics for assessment will be considered upon approval by the subject teachers. It should be a minimum of 2 or a maximum of 4 from the following table

No.	Rubrics	Marks		
1	Multiple Choice Questions (Quiz)	5 Marks		
2	Literature review of papers/journals	5 Marks		
3	Participation in event/workshop/talk/competition followed by a small report and certificate of participation relevant to the subject	5 Marks		
4	Wins in the event/competition/hackathon pertaining to the course	10 Marks		
5	Case study, Presentation, group discussion, technical debate on recent trends in the said course	10 Marks		
6	Project-based Learning and evaluation / Extra assignment / Question paper solution	10 Marks		
7	NPTEL/ Coursera/ Udemy/any MOOC Certificate course for 4 weeks	10 Marks		
8	Content beyond syllabus presentation	10 Marks		
9	Creating Proof of Concept	10 Marks		
10	Mini Project / Extra Experiments/ Virtual Lab	10 Marks		
11	GATE Based on Assignment tests/Tutorials etc	10 Marks		
12	Peer Review and participation	5/10 Marks		
	*For sr.no.7, the date of the certification exam should be within the term, and in case a student is unable to complete the certification, the grading has to be done accordingly.			

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Affiliated to University of Manthal, Approved by ALCILE & Recognized by Govt. of Maharabita)

Indirec	Indirect Assessment:			
1	Skill Enhancement Lecture			
2	Extra Assignments/lab/lecture			
End Se	End Semester Theory Examination:			
1	Question paper will be of 60 marks			
2	Question paper will have a total of five questions			
3	All questions have equal weightage and carry 20 marks each			
4	Any three questions out of five need to be solved.			

Usefu	Useful Links				
1	https://nptel.ac.in/courses/106/105/106105166/				
2	Introduction to Internet of Things and Cloud Udemy				
3	https://nptel.ac.in/courses/108/108/108098/				
4	https://nptel.ac.in/courses/106/105/106105195/				
5	https://www.mygreatlearning.com/iot/free-courses				
6	https://www.coursera.org/courses?query=iot				
7	https://www.edx.org/learn/iot-internet-of-things				

AI T	AI Tools				
1	AWS Management Console				
2	<u>coral.ai</u>				

(An Autonomeus Institute Affiliated to University of Munitol, Approved by ALC.T.E.& Recognized by Govt. of Maharashim) Department of Computer Engineering

INTERNET OF EVERYTHING (Lab)

Comme Colle	Course Name		ching Scheme aching Hours)	Credits Assigned				
Course Code		Theory	Practical	Tutor ial	Theory	TW/P R	Tut	Total
NCMPEL53	Internet of Everything Lab	-	2	-	-	1	-	1
~	~	Examination Scheme						
Course Code	Course Name	Internal A Mid-Term Test	Theory Assessment Continuous Assessment	End Sem Exam	Exam Duration (in Hrs)	Term Work	Pract ical & Oral	Total
NCMPEL53	Internet of Everything Lab	-	-	-	-	25	-	25

Prerec	Prerequisite: C programming, Digital Logic and Computer Architecture, Computer Networks.					
Lab O	bjectives:					
1	To equip students with practical experience in working with IoE devices, sensors, actuators and communication protocols					
2	To teach students how to send data from IoE devices to the cloud and use it for monitoring or analysis.					
3	To foster the development of IoE-based solutions for everyday problems, with a focus on testing and troubleshooting.					
Lab O	outcomes: Students will be able to:					
1	Understand the working principles and interfacing of various sensors for data acquisition.					
2	Learn to control actuators for implementing actions in IoE systems.					
3	Develop skills to program and interface Arduino with sensors and actuators.					
4	Transmit IoT data to the cloud for monitoring, analysis, and visualization.					

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Affiliated to University of Manthal, Approved by ALCILE & Recognized by Govt. of Maharabita)

T

5	Combine sensors, actuators, Arduino, and Raspberry Pi to create functional IoT systems.
6	Test, debug, and evaluate the performance of IoT systems built with Arduino and Raspberry Pi

Suggested Experiments: Students are required to complete at least 10 experiments.				
Sr. No.	Title of Experiment	LOs		
1	To interface LED/Buzzer with Arduino/Raspberry Pi i)To interface LED/Buzzer with Arduino/Raspberry Pi and write a program to 'turn ON' LED for 1 sec after every 2 seconds. ii) To interface Push button/Digital sensor (IR/LDR) with arduino/ Raspberry Pi and write a program to 'turn ON' LED when push button is pressed or at sensor detection.	LO1, LO2		
2	To interface temperature and humidity sensor To interface DHT11 sensor with Arduino/Raspberry Pi and write a program to print temperature and humidity readings.	LO1, LO2		
3	To interface Bluetooth with Arduino/Raspberry Pi i) write a program to send sensor data to a smartphone using Bluetooth. ii) write a program to turn LED ON/OFF when '1'/'0' is received from smartphone using Bluetooth	LO1, LO2, LO3		
4	Implement Edge to cloud Protocols (MQTT and COAP) using a dummy data set.	LO3, LO4		
5	Implement MQTT Write a program on Arduino/Raspberry Pi to publish temperature data to MQTT broker.	LO3 LO4		
6	Write a program on Arduino/Raspberry Pi to upload temperature and humidity data to thingspeak cloud.	LO3, LO4		
7	Write a program on Arduino/Raspberry Pi to retrieve temperature and humidity data from thingspeak cloud	LO3, LO4		
8	IoT Platform Integration Connect an IoE device to AWS IoT, Azure IoT, or Google Cloud IoT for data monitoring.	LO1, LO4		
9	Data Visualization using Grafana/Power BI Develop dashboards to visualize and analyze IoE data trends	LO3		
10	Mini project	All LOs		

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremees Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gord. of Maharashan)

Textb	books:
1	David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton, Jerome Henry, "IoT Fundamentals – Networking Technologies, Protocols, and Use Cases for the Internet of Things", 1st Edition, Published by Pearson Education, Inc, publishing as Cisco Press, 2017.
2	Hakima Chaouchi, "The Internet of Things - Connecting Objects to the Web", 1st Edition, Wiley, 2010.
3	Perry Lea, "Internet of things For Architects", 1st Edition, Packt Publication, 2018
4	Arshdeep Bahga, Vijay Madisetti, "Internet of Things – Hands-On Approach", 2nd Edition, Universities Press, 2016.
Refer	rences:
1	Adrian McEwen & Hakim Cassimally, "Designing the Internet of Things", 1st Edition, Wiley, 2014.
2	Donald Norris, "Raspberry Pi – Projects for the Evil Genius", 2nd Edition, McGraw Hill, 2014.
3	Anand Tamboli, "Build Your Own IoT Platform", 1st Edition, Apress, 2019.

Useful L	inks
1	https://nptel.ac.in/courses/106/105/106105166/
2	https://www.udemy.com/course/a4iot-intro-iot-cloud/?srsltid=AfmBOopAuXxLHyO-ElqezwJkqR JMpQE_TwW-32ka9VdLO7Bwe3RdjjK
3	https://nptel.ac.in/courses/108/108/108098/
4	https://nptel.ac.in/courses/106/105/106105195/
5	https://www.mygreatlearning.com/iot/free-courses
6	https://www.coursera.org/courses?query=iot
7	https://www.edx.org/learn/iot-internet-of-things
AI Tools	
1	AWS Management Console
2	<u>coral.ai</u>

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremees Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gord. of Maharashan)

Term	Term Work:					
1	Term work should consist of 10 experiments.					
2	Journal must include at least 2 assignments on content of theory					
3	The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.					
4	Total 25 Marks (Experiments: 15-marks, Term work Assessment: 10-marks)					

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashim)

Department of Computer Engineering

COURSE NAME: MACHINE LEARNING

Course Code	Course Name		eaching Sche Feaching Hou		Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMMM51	Machine Learning	3	2	-	3	1	-	4

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMMM51	Machine Learning	3	-	-	3	1	-	4
	Course Name	Examination Scheme						
Course		Theory			Exam		Practical	
Code		Internal Mid-Term Test	Assessment Continuous Assessment	End Sem Exam		Term Work		Total
NCMMM51	Machine Learning (Theory)	20	20	60	2	25	25	100

Prerequ	Prerequisite: Data Warehousing and Mining					
Course	Course Objectives:					
1	Understand the fundamental concepts, types, and applications of Machine Learning.					
2	Apply dimensionality reduction techniques and assess model performance using appropriate metrics					
3	Implement supervised learning algorithms for regression and classification problems					
4	Apply unsupervised learning methods for clustering and association rule mining.					
5	Utilize ensemble learning strategies and model validation techniques.					
6	Gain familiarity with MLOps practices for deploying, monitoring, and maintaining machine learning models.					
Course	Outcomes:					
1	Understand the basics of Machine Learning, its types, and essential concepts.					
2	Apply dimensionality reduction techniques and evaluate performance metrics for ML algorithms.					
3	Implement supervised learning models for regression and classification problems.					

(An Autonomeus Institute Affiliated to University of Munitori, Approved by A.I.C.T.E.& Becognized by Govt. of Maharashim) Department of Computer Engineering

4	Implement unsupervised learning techniques and evaluate clustering models.
5	Apply ensemble learning techniques and model validation strategies.
6	Understand and apply MLOps concepts for deploying, monitoring, and maintaining ML models.

Module	Content			Hours	
1	Intro	Introduction to Machine Learning			
	1.1	Introduction to Machine Learning, Data Formats, ML Workflow: Data Preparation, Model Training, Model Evaluation, Train-Test-Validation Splits Data Formats in ML, Structured vs. Unstructured data, Applications of types of Machine Learning across various industries (e.g., Healthcare, Finance, Marketing, Robotics etc.)	CO1	05	
	1.2	Overfitting and Underfitting, Bias-Variance Tradeoff, Model Generalization and Model Overfitting			
2	Dime	ensionality Reduction & Performance Measures			
	2.1	Importance of feature selection in improving model performance, PCA, LDA, Difference between PCA and LDA (Supervised vs Unsupervised), SVD	CO2	06	
	2.2	Performance Measures: Classification Metrics (Accuracy, Precision, Recall, F1-Score, ROC-AUC), Regression Metrics (MSE, RMSE, MAE)			
3	Supe	rvised Learning			
	3.1	Regression: Linear, Polynomial, Ridge, Lasso, Regularization: L1 Regularization (Lasso), L2 Regularization (Ridge), Elastic Net, Decision Tree Regression.			
	3.2	Classification: Numericals on Decision Tree (ID3, CART), Logistic Regression	CO3	09	
	3.3	Classification: Introduction to SVM, Support Vectors, Hyperplane, Margin, Linear SVM: Maximizing margin, Hard and Soft Margin SVM, Non-linear SVM and Kernel Trick			
4	Unsu				
	4.1Clustering types: Graph-based,:Minimum Spanning Tree (MST) Clustering, Model-based: Expectation-Maximization (EM), Density-based: DBSCAN		CO4	06	
	4.2	Basics of Clustering Evaluation: Silhouette Score, Davies-Bouldin Index, Adjusted Rand Index (ARI)			

(An Autonomous Institute Affiliated to University of Mambai, Approved by A.LC.T.E & Recognized by Govt. of Maharashtra)

5	5 Ensemble Learning			
	5.1	Concepts of Ensemble Learning, Advantages and challenges, Bias-Variance trade-off in ensembles, K-Fold Cross-validation	CO5	07
	5.2	Basics of Bagging and Boosting, Random Forest algorithm, Use cases and benefits, AdaBoost, Gradient Boosting, XGBoost overview and comparison, Stacking: layered models and meta-learners, Voting Classifier: hard vs. soft voting		07
6	MLO	Dps & Deployment		
	6.1	Introduction to MLOps: Concept and workflow, Model serving basics, Batch vs. Online (real-time) deployment		
	6.2	Model performance monitoring, Data drift and concept drift detection, Introduction to model retraining strategies, Updating deployed models.	CO6	06
		T	otal	39

Textbo	oks:
1	Peter Harrington, —Machine Learning n Action ^{II} , DreamTech Press
2	Ethem Alpaydın, —Introduction to Machine LearningI, MIT Press
3	Tom M. Mitchell, —Machine Learning McGraw Hill
4	Stephen Marsland, —Machine Learning An Algorithmic Perspectivel, CRC Press
5	Noah Gift & Alfredo Deza, Practical MLOps: Operationalizing Machine Learning, OREILLY
Refere	nces:
1	Han Kamber, —Data Mining Concepts and TechniquesI, Morgan Kaufmann Publishers
2	Dr. Deepali Vora, Dr. Gresha Bhatia, Python for Machine Learning projects
3	Margaret. H. Dunham, —Data Mining Introductory and Advanced Topics, Pearson Education
4	Kevin P. Murphy , Machine Learning — A Probabilistic Perspective
5	Machine Learning For Absolute Beginners: A Plain English Introduction (Second Edition), Oliver Theobald

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.LC.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

6	Richard Duda, Peter Hart, David G. Stork, —Pattern Classification ^{II} , Second Edition, Wiley Publications.
7	Approaching (Almost) Any Machine Learning Problem, Abhishek Thakur

Usefu	Useful Digital Links		
1	https://onlinecourses.nptel.ac.in/noc21_cs06/preview_		
AI T	ools		
1	https://onlinecourses.nptel.ac.in/noc25_cs46/preview		
2	https://onlinecourses.nptel.ac.in/noc25_cs50/preview		
3	https://nptel.ac.in/courses/106106198?utm_source		
4	https://www.coursera.org/specializations/machine-learning		
Case	Studies		
1	https://mobidev.biz/blog/machine-learning-application-use-cases-manufacturing-industry?utm_source		
2	https://www.businessinsider.com/ai-for-worker-site-safety-in-construction-2025-4?utm_source		
3	https://www.coherentsolutions.com/insights/role-of-ml-and-ai-in-clinical-trials-design-use-cases-bene fits.		
4	https://dataforest.ai/blog/practical-data-warehousing-successful-cases		
5	https://www.datamation.com/big-data/data-mining-use-cases/		

Internal Assessment

Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks. The Mid Term test is to be conducted when approximately 50% syllabus is completed and its duration will be one hour.

Continuous Assessment

Continuous Assessment is of **20 marks.** The rubrics for assessment will be considered on approval by the subject teachers. It should be minimum 2 or maximum 4 from the following table.

Sr. No	Rubrics	Marks
1	Multiple Choice Questions (Quiz)	5 Marks
2	Literature review of papers/journals	5 Marks

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Affiliated to University of Manthal, Approved by ALCILE & Recognized by Govt. of Maharabita)

3	Participation in event/ workshop/ talk / competition followed by small report and certificate of participation relevant to the subject	5 Marks				
4	Wins in the event/competition/hackathon pertaining to the course	10 Marks				
5	Case study, Presentation, group discussion, technical debate on recent trends in the said course	10 Marks				
6	Project based Learning and evaluation / Extra assignment / Question paper solution	10 Marks				
7	NPTEL/ Coursera/ Udemy/any MOOC Certificate course for 4 weeks or more	10 Marks				
8	Content beyond syllabus presentation	10 Marks				
9	Creating Proof of Concept	10 Marks				
10	Mini Project / Extra Experiments/ Virtual Lab	10 Marks				
11	Peer Review and participation	5/10 Marks				
	*For sr.no.7, the date of certification exam should be within the term and in case a student is unable to comple the certification, the grading has to be done accordingly.					
Indire	ct Assessment					
1	Mock Viva/Practical					
2	Skill Enhancement Lecture					
3	Extra Assignments/lab/lecture					
End S	emester Theory Examination:					
1	Question paper will be of 60 marks					
2	Question paper will have a total of five questions					
3	All questions have equal weightage and carry 20 marks each					
4	Any three questions out of five need to be solved.					
	1					

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashim)

Department of Computer Engineering

MACHINE LEARNING (Lab)

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW&PR	Tut	Total
NCMMML51	Machine Learning Lab	-	2	-	-	1	-	1
	de Course Name Interna	Examination Scheme						
Course		Theory			Exam		Practical	
Code		Internal	Assessment	End Sam	Duration	Term	&	Total
		Mid-Term Test	Continuous Assessment	End Sem Exam	(in Hrs)	(in Hrc)	Work	Oral
NCMMML51	Machine Learning Lab	-	-	-	-	25	25	50

Lab Obje	Lab Objectives				
1	Understand and apply core ML algorithms on real-world datasets.				
2	Implement dimensionality reduction and supervised/unsupervised techniques.				
3	Evaluate ML models for classification, regression and clustering using performance metrics and validation methods.				
4	Apply ensemble learning strategies to improve model performance.				
5	Engage in case study-based analysis and propose and deploy simple ML models as solutions for real life problems.				

Lab Outcomes		
1	Implement and demonstrate fundamental ML algorithms.	
2	Perform dimensionality reduction and assess its impact on model performance.	
3	Apply regression and classification models and analyze results.	
4	Execute clustering techniques and evaluate clustering outcomes.	
5	Utilize ensemble methods and cross-validation techniques.	

(An Autonomous Institute Affiliated to University of Mambai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

6 Deploy a simple ML model and monitor it post-deployment.

Exp No.	List of Experiments	LOS
1	Apply dimensionality reduction using PCA and LDA on a high-dimensional dataset and analyze feature importance and evaluate reduced feature set impact	LO2
2	Implementation of Linear, Polynomial or Ridge Regression and compare different regression techniques for prediction accuracy	LO3
3	Implement classification model using Logistic regression and evaluate performance measures	LO3
4	Build classification models using Decision Tree(CART) and compare performance metrics with logistic regression	LO3
5	Implement classification models using linear / nonlinear or kernelized SVM and compare their performance metrics	LO3
6	Implement ensemble models : Bagging, Random Forest and evaluate performance measures	LO5
7	Implement ensemble models : and Boosting: XG boost and compare the results	LO5
8	Apply cross-validation (K-Fold, Stratified) and compare ROC-AUC of models	LO5
9	Perform clustering using DBSCAN and evaluate using Silhouette Score	LO4
10	Deploy an ML model using Flask or Streamlit for basic web-based inference to build and deploy a simple interactive ML application	LO1

Term Work			
1	Term work should consist of at least 8 experiments.		
2	The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.		
3	Total 25 Marks (Experiments: 15-marks, Term work Assessment: 10-marks) Pract/oral : 25 marks		

(An Autonomous Institute Affiliated to University of Mumbai, Approved by ALC.T.E.& Recognized by Govt. of Maharashim)

Department of Computer Engineering

CLOUD COMPUTING (Lab)

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMPCL51	Cloud Computing Lab	-	2	-	-	1	-	1
	Course Name	Examination Scheme						
Course		Theory			Exam		Prac	
Code		Internal A Mid-Term Test	Assessment Continuous Assessment	End Sem Exam	Duration (in Hrs)	Term Work	tical & Oral	Total
NCMPCL51	Cloud Computing Lab	-	-	-	-	25	25	50

Prei	Prerequisite: Discrete Structures			
Lab	Lab Objectives:			
1	To provide hands-on experience in setting up and managing cloud infrastructure using AWS and Azure platforms.			
2	To enable students to deploy, configure, and troubleshoot core cloud services such as compute, storage, networking, and databases.			
3	To develop practical skills in leveraging serverless computing, monitoring tools, and cloud automation through CLI and SDKs.			
4	To ensure students can implement secure, scalable, and cost-effective cloud solutions with disaster recovery and load balancing capabilities.			
Lab	Lab Outcomes: At the end of the course, the students will be able to			
1	Create and configure cloud accounts, virtual machines, and storage solutions on AWS and Azure platforms.			
2	Deploy and manage cloud resources such as VPCs, load balancers, and auto-scaling groups for optimized application performance.			
3	Implement identity and access management (IAM) policies to secure cloud resources.			
4	Monitor cloud resource usage, set up alarms, and generate performance reports for proactive management.			

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashim)

- 5
 Use serverless computing solutions like AWS Lambda and Azure Functions to build event-driven applications.

 Demonstrate profisioners in using CLL and SDKs for sloud resource outerestion and userlefters.
- 6 Demonstrate proficiency in using CLI and SDKs for cloud resource automation and workflow management.

Suggested Experiments: Students are required to complete at least 10 experiments.			
Star (*)	Star (*) marked experiments are compulsory.		
Sr. No.	. Title of Experiment		
1*	 Setting Up AWS and Azure Accounts Objective: Create and configure free-tier accounts on AWS and Azure. Description: Students will register, explore the dashboards, and set up billing alerts to manage usage. 	LO1	
2*	 Launching Virtual Machines Objective: Deploy virtual machines (VMs) on AWS EC2 and Azure Virtual Machines. Description: Configure OS, choose instance types, and set up secure remote access (SSH/RDP) for the VMs. 	LO1	
3*	 Working with Storage Services Objective: Explore storage solutions in AWS S3 and Azure Blob Storage. Description: Create storage buckets, upload/download files, and set access permissions for data sharing. 	LO2	
4*	 Deploying Serverless Functions Objective: Create and test serverless functions using AWS Lambda and Azure Functions. Description: Write and deploy simple functions (e.g., a REST API or data processing task) triggered by events. 	LO3	
5*	 Setting Up and Managing Databases Objective: Work with managed database services like AWS RDS and Azure SQL Database. Description: Create databases, connect using client tools, and perform basic CRUD operations. 	LO4	
6*	 Load Balancing and Auto-Scaling Objective: Implement load balancing and auto-scaling for web applications. Description: Use AWS Elastic Load Balancer (ELB) and Azure Load Balancer to distribute traffic and configure scaling rules. 	LO2	

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashtm)

7*	 Configuring IAM and Access Control Objective: Explore identity and access management (IAM) in AWS and Azure. Description: Create users, roles, and policies to restrict access to cloud resources. 	LO3
8*	 Monitoring Cloud Resources Objective: Use monitoring tools like AWS CloudWatch and Azure Monitor. Description: Configure alarms, monitor resource utilization, and generate performance reports. 	LO2
9*	 Deploying a Web Application Objective: Host a web application using cloud services. Description: Deploy a static or dynamic website on AWS Elastic Beanstalk and Azure App Service. 	LO5
10	 Configuring Backups and Disaster Recovery Objective: Set up automated backups and disaster recovery plans. Description: Use AWS Backup and Azure Recovery Services to ensure data protection. 	LO5
11	 Integrating CLI and SDK for Cloud Operations Objective: Automate cloud tasks using AWS CLI, Azure CLI, and SDKs. Description: Use command-line tools and SDKs to provision resources and perform basic automation. 	LO6

Useful Links			
1	AWS Free Tier and Getting Started – Create and explore AWS services with free-tier usage.		
2	Microsoft Azure Free Account – Set up Azure cloud resources with a free \$200 credit.		
3	AWS Documentation Portal – Official AWS documentation and service guides.		
4	Azure Documentation Portal – Microsoft Learn for Azure concepts and tutorials.		
5	Cloud Skills Challenge by Microsoft – Hands-on challenges to practice Azure skills.		
Virtua	l Lab		
1	AWS Cloud Quest (Free Tier Labs) – Interactive learning through gamified AWS labs.		
2	Microsoft Azure Hands-on Labs – Free, browser-based sandbox for Azure with real services.		
AI Tools			
1	AWS Trusted Advisor – AI-powered best practice checker for performance, cost, and security.		
2	Azure Advisor – Personalized AI-driven cloud optimization recommendations.		

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Affiliated to University of Manthal, Approved by ALCILE & Recognized by Govt. of Maharabita)

3	CAST Highlight – AI-based cloud readiness assessment and migration analysis tool.
4	<u>CloudZero</u> – AI-powered cost intelligence tool for cloud resource tracking and budgeting.

Term Work:			
1	Journal must include at least 2 assignments on content of theory and practical of "CLOUD COMPUTING AWS/AZURE"		
2	The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.		
3	Mini Project		
	Total 25 Marks (Experiments: 10-marks, Mini Project: 10-marks, Assignment: 5-marks)		

orneas Institute Affiliated to University of Mumbai, Approved by A.LC.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

SEM VI SYLLABUS Department of Computer Engineering

(An Autonomeus Institute Affiliated to University of Munitori, Approved by A.I.C.T.E.& Becognized by Govt. of Maharashim) Department of Computer Engineering

	Semester VI Teaching Scheme							
Course	Course	Course name		Teaching scheme (Contact Hours)		Credits assigned		Total
Туре	Code		Th	Pr	Tu	Th	Pr/Tut	
РСС	NCMPC61/ NCMPCL61	Software Engineering and Architecture	3	2	-	3	1	4
РСС	NCMPC62/ NCMPCL62	Cryptocurrency & Blockchain Development	3	2	-	3	1	4
PEC	NCMPE6X/ NCMPEL6X	Program Elective 2	3	2	-	3	1-	4
PEC	NCMPE6X/ NCMPEL6X	Program Elective 3	3	2	-	3	1	4
MDM	NCMMM61	Deep Learning	1	2	-	-	2	2
VSEC	NCMVS61	Mobile App Development	1	2	-	-	2	2
РСС	NCMCP61	Capstone Project I	-	4	-	-	2	2
			15	14	0	14	8	22
	Total Hours					Total C	Credits	22

	Prog	ram Elective 2	Program Elective 3				
Sr. No	Course Code	Course Name	Course Code	Course Name			
1	NCMPE61	Applied Data Science	NCMPE64 Natural Language Processing and Generative AI				
2	NCMPEL61	Applied Data Science Lab	NCMPEL64	Natural Language Processing and Generative AII Lab			
3	NCMPE62	Graphics & Animation	NCMPE65	GeoInformatics			
4	NCMPEL62	Graphics & Animation Lab	NCMPEL65	GeoInformatics Lab			
5	NCMPE63	System Software	NCMPE66	Embedded Systems and RTOS			
6	NCMPEL63	System Software Lab	NCMPEL66	Embedded Systems and RTOS Lab			

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremees Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gord. of Maharashan)

Semester VI Examination Scheme									
				T	heory		Term Work		
			Inte Assess		End	Exam Duratio		Pract &	Total
Course Type	Course Code	Course Name	Mid Test	СА	Sem Exam	n (in Hrs)		oral	
PCC	NCMPC61/ NCMPCL61	Software Engineering and Architecture	20	20	60	2	25	-	125
РСС	NCMPC62/ NCMPCL62	Cryptocurrency & Blockchain Development	20	20	60	2	25	-	125
PEC	NCMPE6X/ NCMPEL6X	Program Elective 2	20	20	60	2	25	-	125
PEC	NCMPE6X/ NCMPEL6X	Program Elective 3	20	20	60	2	25	-	125
MDM	NCMMM61	Deep Learning	-	-	-	-	50	25	75
VSEC	NCMVS61	Mobile App Development	-	-	-	-	50	25	75
PCC	NCMCP61	Capstone Project I	-	-	-	-	25	25	50
TOTAL MARKS								700	

(An Autonomous Institute Affiliated to University of Mambai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtm)

Department of Computer Engineering

COURSE NAME: SOFTWARE ENGINEERING AND ARCHITECTURE

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total	
NCMPC61	Software Engineering and Architecture	3	2	-	3	1	-	4	

Course Code	Course Name		aching Scheme eaching Hours		Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total	
NCMPC61	Software Engineering and Architecture (Theory)	3	-	-	3	-	-	3	
		Examination Scheme							
Course	Course Name	Theory			Exam		Practical		
Code		Internal Mid-Term Test	Assessment Continuous Assessment	End Sem Exam	D	Term Work	& Oral	Total	
NCMPC61	Software Engineering and Architecture (Theory)	20	20	60	2	-	-	100	

Prereq	Prerequisite: Object Oriented Programming with Java, Python Programming					
Course	Course Objectives: Students should be able to					
1	Understand software engineering principles, processes, and methodologies.					
2	2 Learn to design, model, and evaluate software architectures.					
3	Develop skills for managing software projects efficiently.					
4	Explore modern software development practices, tools, and frameworks					
5	Understand the foundational concepts of intelligent and agentic systems in software engineering.					
6	6 Analyze and design agent-based solutions for real world problems by applying agentic frameworks and tools					
Course Outcomes: Students should be able to						

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremees Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gord. of Maharashan)

1	Identify requirements, apply modeling techniques & assess the process models.					
2	Plan, schedule and track the progress of the projects using agile tools.					
3	Create software architecture styles and design patterns for the software projects.					
4	Develop test cases and perform manual and automated testing tools of software projects using various approaches.					
5	Design and implement intelligent software agents that can perceive, decide, and act.					
6	Manage the lifecycle (deployment, monitoring, scaling) of agentic applications by Using state-of-the-art libraries, frameworks and tools.					

Module		Content	CO	Hours			
	Intro	Introduction to Software Engineering and Architecture					
	1.1	Software Engineering and Architecture Overview: Introduction to Software Engineering, Software architecture vs. software design, Software development lifecycle (SDLC) models: Waterfall, Incremental Process Models, Evolutionary Process Models: Spiral, Introduction to Agile process model: Overview of JIRA, Asana	CO1, CO2	07			
1	1.2	Requirement Engineering: Requirement gathering techniques - Open ended and close ended questionnaires, Survey, Joint Application Design, Functional and non-functional requirements, user requirements, system requirements, interface specification, Requirement modeling — Use cases, user stories and Requirements validation					
	Softw	are Modeling and Design					
	2.1	Software Design Principles: Modularity, Abstraction, Coupling, Cohesion, SOLID principles, Design Patterns - Singleton and Factory Methods (Creational Patterns), Bridge and Composite Methods (Structural Patterns), Blackboard Method (Behavioural Patterns)	CO3	06			
2	2.2	Structured and Object Oriented Modeling : Use case Diagram, Data flow diagram, Class diagrams, Sequence Diagram, Component diagrams, Deployment diagrams.					
	Softw	Software Architecture					
	3.1	Architectural Patterns & Styles	CO3	07			

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremens Institute Affiliated to University of Manthal, Approved by ALCILE & Recognized by Govt. of Maharabita)

3		Architectural / Enterprise Patterns: State Logic Controller, Sense-Logic-Actuator,Model-View-Controller,Service-Oriented Architecture (SOA), Architectural Styles: Layered architecture, Client-server, Microservices, Event-driven architecture, Pipe and Filter.		
	Softw	are Estimation and Project Scheduling		
4	4.1	Software Metrics: LOC, Function Points, Introduction to Basic COCOMO model and COCOMO II Model	CO2	04
	4.2	Project Scheduling & Tracking : Work breakdown structure – Gantt Chart – CPM / PERT		
	Softw	are Testing and Introduction to Agentic Software Engineering		
	5.1	Unit testing, Integration testing, Validation testing, System testing		
5	5.2	Testing Techniques: white-box testing - Basis path, Control structure testing. Black-box testing - Graph based, Equivalence, Boundary Value, Introduction to automated industrial software testing tools (Selenium)		08
	5.3	Introduction to Autonomous Agents, Characteristics of Agentic Software, Differences between Traditional AI and Agentic AI		
	Found	lations of Intelligent Agents, Agentic Frameworks and Tools		
	6.1	Agent Architectures: Reactive, Deliberative, Hybrid, Cognitive Models of Agents, Communication between Agents (Protocols, Languages)		
	6.2	Introduction to OpenAI Agents SDK, LangGraph, CrewAI, AutoGen, Hands-on: Building Simple Agents	CO6	07
6	6.3	Emerging Trends in Software development: DevOp Architecture, DevOps Toolchain.		
			Fotal	39

Textboo	Textbooks					
1Roger Pressman, "Software Engineering: A Practitioner's Approach", 9th edition , McGraw-Hill Publications, 2019						
2	Ian Sommerville, "Software Engineering", 10th edition, Pearson Education, 2016					
3	"Software Architecture: Foundations, Theory, and Practice" by Richard N. Taylor, Nenad Medvidovic, Eric Dashofy, ISBN:978-0-470-16774					

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autoremees Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gord. of Maharashan)

4	Grady Booch, James Rambaugh, Ivar Jacobson, "The Unified Modeling Language user guide" , 2 nd edition, Pearson Education, 2005
5	Multiagent Systems and Applications: Volume 1 Practice and Experience by Maria Ganzha and Lakhmi C. Jain, Springer Publisher, October 2012, ISBN:978-3-642-33322-4

Referen	References				
1	Clean Code: A Handbook of Agile Software Craftsmanship by Robert C. Martin, 2015				
2	Rajib Mall, "Fundamentals of Software Engineering", 5th edition, Prentice Hall India, 2014				
3	Jibitesh Mishra and Ashok Mohanty, "Software Engineering", Pearson, 2011				
4	Ugrasen Suman, "Software Engineering – Concepts and Practices", Cengage Learning, 2013				
5	Fundamentals of Software Architecture by Mark Richards & Neal Ford, 2020				
Useful I	links				
Resourc	es				
1	https://nptel.ac.in/courses/106/105/106105182/				
2	https://onlinecourses.nptel.ac.in/noc19_cs69/preview				
3	https://www.mooc-list.com/course/software-engineering-introduction-edx				
4	Software Engineering Specialization by University of Minnesota				
5	Software Design and Architecture Specialization by University of Alberta				
6	Software Design and Architecture Roadmap				
7	OpenAI Agents SDK Documentation				
8	CrewAI Tutorials				
9	LangGraph for Python Developers				

atoriornesis Institute Affiliated to University of Mambai, Approved by ALCTE & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

AI Tools	
1	Project Planning and Management: Jira, Microsoft Project, Asana
2	Development: GitHub Copilot, Tabnine
3	Testing: <u>DeepCode</u> , <u>Snyk</u>
4	Deployment: <u>Harness</u> , <u>Spinnaker</u>
5	Monitoring and Maintenance: Datadog, New Relic
6	Documentation and Knowledge Management: Confluence, Slite
Industry	articles
1	https://clickup.com/blog/
Case Stu	dies
1	https://www.bugraptors.com/case-study
Virtual I	Lab
1	http://vlabs.iitkgp.ernet.in/se/

Internal Assessment

Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks. The Mid Term test is to be conducted when approximately 50% syllabus is completed and its duration will be one hour.

Continuous Assessment

Continuous Assessment is of 20 marks. The rubrics for assessment will be considered on approval by the subject teachers. It should be minimum 2 or maximum 4 from the following table.

Sr.No	Rubrics	Marks
1	Multiple Choice Questions (Quiz)	5 Marks
2	Literature review of papers/journals	5 Marks
3	Participation in event/ workshop/ talk / competition followed by small report and certificate of participation relevant to the subject	5 Marks
4	Wins in the event/competition/hackathon pertaining to the course	10 Marks

atoromeus Institute Affiliated to University of Mambai, Approved by ALCTE & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

5	Case study, Presentation, group discussion, technical debate on recent trends in the said course	10 Marks
6	Project based Learning and evaluation / Extra assignment / Question paper solution	10 Marks
7	NPTEL/ Coursera/ Udemy/any MOOC Certificate course for 4 weeks or more	10 Marks
8	Content beyond syllabus presentation	10 Marks
9	Creating Proof of Concept	10 Marks
10	Mini Project / Extra Experiments/ Virtual Lab	10 Marks
11	GATE Based Assignment test/Tutorials etc	10 Marks
12	Peer Review and participation	5/10 Marks

*For sr.no.7, the date of certification exam should be within the term and in case a student is unable to complete the certification, the grading has to be done accordingly.

Indir	Indirect Assessment					
1	Mock Viva/Practical					
2	Skill Enhancement Lecture					
3	Extra Assignments/lab/lecture					
End	Semester Theory Examination					
1	Question Paper will comprise a total of six questions					
2	All Question carries equal Marks					
3	Questions will be mixed in nature(For ExSuppose question 2 has part (a) from module 3 then part (b) will be from any other module other than module 3					
4	Only Four Questions need to be solved					
5	In the question paper, the weightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus.					

n Autonomous Institute Affiliated to University of Mambai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtm)

Department of Computer Engineering

SOFTWARE ENGINEERING AND ARCHITECTURE (Lab)

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMPCL61	Software Engineering and Architecture Lab	-	2	-	-	1	-	1
				Exan	ination Sc	heme		
Course Code	Course Name	Theory			Exam	Term Work	Practical &	
Coue		Internal Mid-Term	Assessment Continuous	End Sem	· · · · ·	Term work	ه Oral	Total
		Test	Assessment	Exam				
NCMPCL61	Software Engineering and Architecture (Theory)	-	-	-	-	25	-	25

Prere	Prerequisite: Object Oriented Programming with Java, Python Programming					
Lab	Lab Objectives:					
1	Understand and implement software engineering principles, process models and design patterns.					
2	Apply architectural styles and patterns in software projects.					
3	Perform structured and object-oriented modeling using UML diagrams					
4	Gain hands-on experience with agile project management and estimation tools					
5	Build and test software components using manual and automated tools.					
6	Design and manage lifecycle activities for any agent-based systems to build intelligent software agents using agentic frameworks and tools.					
Lab O	utcomes:					
1	Apply modeling techniques to document software requirements and design.					
2	Plan, schedule, and track software projects using modern agile tools.					
3	Design and implement software architecture and design patterns.					

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automatica Latitude La University of Muniter, Apprend by ALCITE & Recognized by Gord, of Multiradum)

Department	of	Computer	Engineering
The family strate and		Comparer	The second

4	Perform unit and integration testing, including automation using Selenium
5	Develop simple autonomous software agents using frameworks like OpenAI Agents SDK and LangGraph.
6	Integrate DevOps practices for building and managing scalable systems.

Suggest	Suggested Experiments: Students are required to complete at least 8 experiments.					
Sr.No.	List of Experiments	LOs				
1	Create Software Requirement Specification (SRS) using functional, non-functional requirements, use cases, and user stories for a real-world application.	LO1				
2	Draw Use Case Diagrams and Level 1 & Level 2 Data Flow Diagrams (DFD) for the chosen problem statement (Eg., E-Commerce, Banking Systems, etc.)	LO1				
3	Model Class Diagrams and Sequence Diagrams for a chosen system (e.g., Library Management, Online Shopping).	LO1, LO3				
4	Design architecture using MVC and appropriate design patterns for a chosen problem statement and document it.	LO3				
5	Create and manage a small software project using Agile methodology with tools like Jira or Asana (including creating user stories, sprints, backlogs).	LO1, LO2				
6	Estimate software effort, cost, and schedule using COCOMO II models and Gantt chart respectively using SE tools.	LO2				
7	Perform black-box (equivalence partitioning / boundary value analysis) and white-box testing (basis path) and automate test cases using Selenium.	LO4				
8	Implement basic DevOps pipeline: GitHub actions for CI/CD pipeline for a simple Java / Python app	LO6				
9	Create a simple agent (e.g., chatbot agent) using OpenAI Agents SDK or LangGraph. Demonstrate agent's perception, decision, and action.	LO5				
10	Build a simple multi-agent system where two agents communicate (example:	LO5				

Autonomous Institute Affiliated to University of Mambai, Approved by A.LC.T.E.& Recognized by Govt. of Maharashta)

Department of Computer Engineering

buyer and seller agents) and demonstrate coordination.

Useful I	Useful Links					
Resources						
1	https://nptel.ac.in/courses/106/105/106105182/					
2	https://onlinecourses.nptel.ac.in/noc19_cs69/preview					
3	https://www.mooc-list.com/course/software-engineering-introduction-edx					
4	Software Engineering Specialization by University of Minnesota					
5	Software Design and Architecture Specialization by University of Alberta					
6	Software Design and Architecture Roadmap					
7	OpenAI Agents SDK Documentation					
8	CrewAI Tutorials					
9	LangGraph for Python Developers					
AI Tools						
1	Project Planning and Management: Jira, Microsoft Project, Asana					
2	Development: GitHub Copilot, Tabnine					
3	Testing: <u>DeepCode</u> , <u>Snyk</u>					
4	Deployment: <u>Harness</u> , <u>Spinnaker</u>					
5	Monitoring and Maintenance: Datadog, New Relic					
6	Documentation and Knowledge Management: Confluence, Slite					
Industry	y articles					
1	https://clickup.com/blog/					
Case Stu	ıdies					
1	https://www.bugraptors.com/case-study					
Virtual	Lab					
1	http://vlabs.iitkgp.ernet.in/se/					

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotors Institute Affiliated to University of Manthai, Apprend by ALCIE & Recognized by Gov. of Maharadam)

Term Work:					
1	Term work should consist of 8 experiments.				
2	The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.				
3	Total 25 Marks (Experiments: 15-marks, Attendance: 5-marks, Assignment: 5-marks)				

(An Autonomous Institute Affiliated to University of Mambai, Approved by A.LC.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

COURSE NAME: CRYPTOCURRENCY AND BLOCKCHAIN DEVELOPMENT

Course Code	Course Name	Teaching Scheme (Teaching Hours)		Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMPC62	Cryptocurrency & Blockchain Development	3	2	-	3	1	-	4

Course	Comes Nome		eaching Schem Teaching Hours	Credits Assigned				
Code	Course Name	Theory	Practical	Tutorial	Theory	TW/P R	Tut	Total
NCMPC62	Cryptocurrency & Blockchain Development	3		-	3	-	-	3
	Course Name	Examination Scheme						
Course		Theory			Exam	Term	Practi cal	
Code		Internal Assessment		End	Duration	Work	Cai &	Total
		Mid-Term Test	Continuous Assessment	Sem Exam	(in Hrs)	WOLK	Oral	
NCMPC62	Cryptocurrency & Blockchain Development	20	20	60	2	-	-	100

Prerequisite: Knowledge on number systems.						
Course	Course Objectives					
1	1 To provide an in-depth understanding of blockchain technology and cryptocurrency ecosystems, including their applications and limitations.					
2	To equip students with the skills needed to design, develop, and deploy secure blockchain solutions and smart contracts.					
3	To explore the ecosystem of decentralized applications, focusing on their architecture, development, and integration with blockchain networks.					
4	To introduce advanced topics like DeFi, NFTs, scalability, and blockchain's role in emerging technologies for industry-oriented learning.					
Cours	e Outcomes: Students will be able					
1	Understand the principles, architecture, and applications of blockchain and cryptocurrencies.					
2	Analyze and evaluate the features of major blockchain platforms and their use cases.					
3	Design and implement secure cryptocurrency wallets and manage transactions effectively.					

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autorement Institute Alffiliated to University of Manifest, Apprend by ALCIE & Recognized by Gord. of Maharadata)

4	Develop and deploy smart contracts using Solidity and integrate them with blockchain networks.
5	Build and optimize decentralized applications (DApps) with cryptocurrency payment integration.
6	Assess and implement advanced blockchain solutions like DeFi, NFTs, and layer-2 scalability techniques.

Module		Content	СО	Hours	
	Intro	duction to Cryptocurrency and Blockchain		07	
	1.1	History and Evolution of Money and Digital Currencies, Understanding Cryptocurrencies: Concepts, Types, and Benefits, Blockchain Technology Fundamentals: Distributed Ledgers and Immutability,			
1	1.2	Consensus Mechanisms: Proof of Work (PoW), Proof of Stake (PoS), and Alternatives, Key Components of Blockchain: Cryptography, Hashing, and Mining, Applications of Blockchain Beyond Cryptocurrencies (Supply Chain, Healthcare, etc.), Blockchain's Role in Decentralization and the Future of Web3	CO1		
	Block	cchain Architecture and Platforms			
2	2.1	Anatomy of a Blockchain: Blocks, Transactions, and Nodes, Types of Blockchains: Public, Private, Consortium, and Hybrid, Exploring Key Blockchain Platforms: Bitcoin, Ethereum, Hyperledger, and Binance Smart Chain.	CO2	06	
	2.2	Smart Contracts: Concept, Structure, and Applications, Overview of Decentralized Applications (DApps) and Token Standards (ERC-20, ERC-721, etc.), Security Aspects of Blockchain: Attacks, Challenges, and Mitigation Techniques			
	Cryptocurrency Ecosystem and Wallets				
3	3.1	Popular Cryptocurrencies: Bitcoin, Ethereum, Ripple, and Altcoins, Cryptocurrency Mining: Mechanisms, Challenges, and Rewards, Cryptocurrency Wallets: Hot vs. Cold Wallets, Multi-Signature Wallets.	CO3	06	
	3.2	Securing Wallets: Threats, Recovery Methods, and Best Practices, Cryptocurrency Exchanges: Types, Trading Mechanisms, and Risks, Regulatory and Legal Frameworks for Cryptocurrencies Globally			
	Smar				
4	Smart Contracts and Development4.1Introduction to Solidity Programming Language, Setting Up Development Environments: Truffle, Ganache, and Remix IDE, Writing and Deploying Basic Smart Contracts, Smart Contract Lifecycle, Gas Optimization, and Fees				

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automoreus Institute Affiliated to University of Municipal, Approval by ALCIE & Recognized by Govt. of Mathematica)

	4.2	Advanced Solidity Concepts: Libraries, Modifiers, and Events, Debugging, Testing, and Security Best Practices for Smart Contracts, Integration of Smart Contracts with Blockchain Networks					
	Building Decentralized Applications (DApps)						
5	5.1	Architecture of Decentralized Applications, Interaction Between Smart Contracts and Frontend Using Web3.js, Tools for DApp Development: Web3.js, Ethers.js, and Metamask	CO5	07			
	5.2	Building and Deploying a Simple DApp on Ethereum Testnet, Integrating					
	Adva						
6	6.1	Layer-2 Scaling Solutions: Polygon, Lightning Network, and Optimistic Rollups, Decentralized Finance (DeFi): Protocols, Platforms, and Applications, Non-Fungible Tokens (NFTs): Standards, Creation, and Marketplace Integration	CO6	06			
		Blockchain Interoperability: Bridging Between Different Networks, Blockchain's Role in Emerging Technologies: AI, IoT, and Metaverse					
	6.2	Case Study: End-to-End Development and Deployment of a Blockchain-Based Solution for any domain					
Total							

Textbooks					
1	"Mastering Blockchain: Unlocking the Power of Cryptocurrencies, Smart Contracts, and Decentralized Applications" by Imran Bashir				
2	"Blockchain Basics: A Non-Technical Introduction in 25 Steps" by Daniel Drescher				
3	"Solidity Programming Essentials: A Beginner's Guide to Build Smart Contracts for Ethereum and Blockchain" by Ritesh Modi				
Refer	ences				
1	"Blockchain Revolution: How the Technology Behind Bitcoin and Other Cryptocurrencies is Changing the World" by Don Tapscott and Alex Tapscott				
2	"Cryptocurrency: How Bitcoin and Digital Money are Challenging the Global Economic Order" by Paul Vigna and Michael J. Casey				
3	"The Basics of Bitcoins and Blockchains" by Antony Lewis				

Autoromeus Institute Affiliated to University of Mumbai, Approved by A.LC.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

4	"Building Ethereum DApps: Decentralized Applications on the Ethereum Blockchain" by Roberto Infante						
Useful	Useful Links						
Resour	ces						
1	https://github.com/frankiefab100/Blockchain-Development-Resources						
2	https://tech.seas.harvard.edu/free-blockchain						
AI Too	s						
1	https://www.chaingpt.org						
2	https://www.anchain.ai/ciso						
3	https://workik.com/blockchain-code-generator						
Indust	y articles						
1	https://www.ft.com/content/5acb33a2-4690-4f56-add3-7e2b01530a21						
Case St	Case Studies						
1	https://www.wired.com/story/user-owned-ai-illia-polosukhin-open-source-web3						
2	https://coingeek.com/blockchain101/a-guide-to-ai-driven-solutions-for-strengthening-blockchain-s ecurity/?utm_source=chatgpt.com						

Internal Assessment

Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks. The Mid Term test is to be conducted when approximately 50% syllabus is completed and its duration will be one hour.

Continuous Assessment

Continuous Assessment is of **20 marks.** The rubrics for assessment will be considered on approval by the subject teachers. It should be minimum 2 or maximum 4 from the following table.

Sr. No	Rubrics	Marks
1	Multiple Choice Questions (Quiz)	5 Marks
2	Literature review of papers/journals	5 Marks
3	Participation in event/ workshop/ talk / competition followed by small report and certificate of participation relevant to the subject	5 Marks

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotion Institute Affiliated to University of Manthai, Apprend by ALCITE & Recognized by Gord, of Maharadam)

4	Wins in the event/competition/hackathon pertaining to the course	10 Marks				
5	Case study, Presentation, group discussion, technical debate on recent trends in the said course	10 Marks				
6	Project based Learning and evaluation / Extra assignment / Question paper solution	10 Marks				
7	NPTEL/ Coursera/ Udemy/any MOOC Certificate course for 4 weeks or more	10 Marks				
8	Content beyond syllabus presentation	10 Marks				
9	Creating Proof of Concept	10 Marks				
10	Mini Project / Extra Experiments/ Virtual Lab	10 Marks				
11	Peer Review and participation	5/10 Marks				
	*For sr.no.7, the date of certification exam should be within the term and in case a student is unable to complete the certification, the grading has to be done accordingly.					
Indire	Indirect Assessment					
1	Mock Viva/Practical					
2	Skill Enhancement Lecture					
3	Extra Assignments/lab/lecture					
End S	emester Theory Examination:					
1	1 Question paper will be of 60 marks					
2	Question paper will have a total of five questions					
3	All questions have equal weightage and carry 20 marks each					
4	Any three questions out of five need to be solved.					

An Autonomous Institute Affiliated to University of Mambai, Approved by A.LC.T.E.R. Recognized by Govt. of Maharashtra)

Department of Computer Engineering

CRYPTOCURRENCY & BLOCKCHAIN DEVELOPMENT (Lab)

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned				
Coue		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total	
NCMPCL62	Cryptocurrency & Blockchain Development Lab	-	2	-	-	1	-	1	
	Course Name	Examination Scheme							
Course Code		Course Name		Theory		Exam	Term	Practical	
Coue		Internal Assessment		End Sem	Duration	Work	& Oral	Total	
		Mid-Term Test	Continuous Assessment	End Sem Exam	(in Hrs)		Ural		
NCMPCL62	Cryptocurrency & Blockchain Development Lab	-	-	-	-	25	-	25	

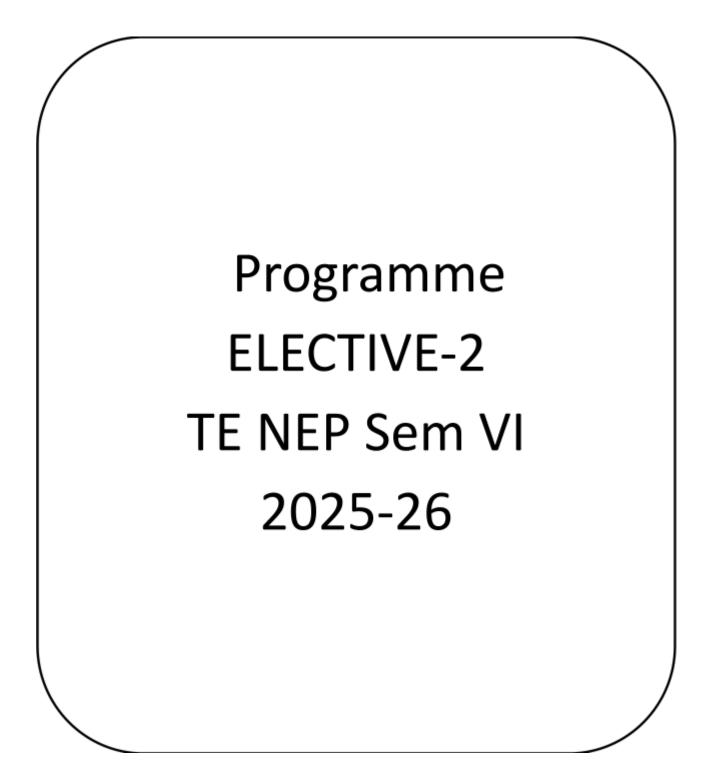
Prer	Prerequisite:					
Lab	Lab Objectives					
1	To provide hands-on experience in blockchain and cryptocurrency development environments.					
2	To enable students to design and deploy blockchain networks, smart contracts, and decentralized applications (DApps).					
3	To enhance skills in integrating cryptocurrency wallets and exchanges into applications securely.					
4	To foster problem-solving and innovation in blockchain technology applications through practical experimentation.					
Lab	Outcomes					
1	Configure and manage blockchain networks using popular platforms.					
2	Design and implement smart contracts for various use cases.					
3	Develop and deploy decentralized applications (DApps) on blockchain platforms.					
4	Integrate cryptocurrency wallets and secure transactions effectively.					
5	Analyze and optimize blockchain-based systems for performance and scalability.					
6	Evaluate the practical implications of blockchain security and compliance requirements.					

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gov. of Maharadam)

Sugg	Suggested Experiments: Students are required to complete at least 10 experiments.				
Star (*) marked experiments are compulsory.					
Sr. No	List the Experiment	LOs			
1*	Explore the Cryptocurrency Landscape	LO5			
2*	Cryptography in Blockchain, Merkle root tree hash	LO6			
3*	Create a Blockchain using Python	LO1			
4*	Create a Crypto Currency using Python for the blockchain implemented in Experiment No. 3 and create a network of nodes.	LO1, LO4			
5*	Hands on Solidity Programming Assignments for creating Smart Contracts	LO2			
6	Deploying a Voting/Ballot Smart Contract in Remix IDE	LO2, LO3			
7*	Creating a Token (ERC-20) in Remix IDE	LO2			
8*	Building a web based Decentralized Application (DApp) using Truffle suite	LO3			
9*	Configuring a Cryptocurrency Wallet using Metamask and integrating it with a DApp.	LO4			
10*	Simulating Blockchain Transactions using Ganache to simulate transactions and observe block creation.	LO1, LO5			
11	Implement a Private Ethereum Blockchain using Geth	LO1, LO5			

Useful	Useful Links					
1	https://www.lfdecentralizedtrust.org/					
2	https://ethereum.org/en/					
3	https://coinmarketcap.com/coins/					
Tools a	nd Articles					
1	https://archive.trufflesuite.com/					
2	https://remix.ethereum.org/					
3	https://metamask.io/					

(An Autonomous Institute Affiliated to University of Mambai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashtra)


Department of Computer Engineering

4 <u>https://archive.trufflesuite.com/ganache/</u>

Term Wo	Term Work						
1	1 Term work should consist of 10 experiments.						
2	The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.						
3	Total 25 Marks (Experiments: 15-marks, Attendance: 5-marks, Assignment: 5-marks)						

Autonomous Institute Affiliated to University of Mamitoi, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashtra)

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.LC.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

COURSE NAME: APPLIED DATA SCIENCE

Course Code	Course Name		eaching Sche Feaching Hou			Credits A	Assigned	
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMPE61	Applied Data Science	3	2	-	3	1	-	4

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Course Code		Theory	Practical	Tutorial	Theory	TW/P R	Tut	Total
NCMPE61	Applied Data Science	3 -		3	-		3	
		Examination Scheme						
Course	Course Name	Theory			Exam _		Practical	
Code		Internal A	ssessment	End	Duration	Term	&	Total
		Mid-Term Test	Continuous Assessment	Sem Exam	(in Hrs)	Work	Oral	
NCMPE61	Applied Data Science	20	20	60	2	-		100

Prerequi	Prerequisite: Engineering Mathematics, Machine Learning, Data Structures & Algorithms					
Course (Dbjectives					
1	To introduce students to the basic concepts of data science.					
2	To acquire an in-depth understanding of data exploration and data visualization.					
3	To be familiar with various anomaly detection techniques.					
4	To understand the data science techniques for different applications.					
Course (Course Outcomes					
1	To gain fundamental knowledge of the data science process.					
2	Apply different methodologies and evaluation strategies.					
3	To apply data exploration and visualization techniques					
4	To apply anomaly detection techniques.					
5	To gain an in-depth understanding of time-series forecasting.					

Autonomous Institute Affiliated to University of Mumboi, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

6 To apply Optimization Techniques and explore data science techniques to real world applications.

Module		Content	СО	Hours
		Introduction to Data Science		
	1.1	Introduction to Data Science, Data Science Process		
1	1.2	Motivation to use Data Science Techniques: Volume, Dimensions and Complexity, Data Science Tasks and Examples	CO1	05
	1.3	Overview of Data Preparation, Modeling, Difference between data science and data analytics		
		Data Exploration		
2	2.1	Descriptive Statistics: Univariate Exploration: Measure of Central Tendency(Methods to calculate Arithmetic Mean,Weighted Mean,Median,Mode) Measure of Dispersion(Range,Quartile Deviation,IQR),Measures of Skewness (Karl Pearson Coeff.of skewness, Bowley's Coefficient of skewness), Measures of Kurtosis Multivariate Exploration:Correlation Analysis, Concept of Correlation,Bivariate Distribution,Covariance Types of correlation, Karl Pearson's Coefficient of Correlation	CO2	10
	2.2	Inferential Statistics: Overview of Various forms of distributions: Normal, Poisson Statistical Inference-Tests of Significance: Procedure for testing a Hypothesis,Significance tests in Attributes,Test of significance of a single Mean, Central limit theorem, Confidence Interval, Z-test, t-test, Type-I, Type-II Errors,F-Distribution and Analysis of Variance(ANOVA)		
		Methodology and Data Visualization		
	3.1	Methodology: Overview of model building, Cross Validation, K-fold cross validation, leave-1 out, Bootstrapping		0.6
3	3.2	Data Visualization Univariate Visualization: Histogram, Quartile, Distribution Chart Multivariate Visualization: Scatter Plot, Scatter Matrix, Bubble chart, Density Chart, Roadmap for Data Exploration	CO3	06
		Anomaly Detection		
4	4.1	Outliers, Causes of Outliers, Anomaly detection techniques, Outlier Detection using Statistics	CO4	06

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automoreus Institute Affiliated to University of Municol, Approved by ALCIE & Recognized by Govt. of Maharashim)

	4.2	Outlier Detection using Distance based method, Outlier detection using density-based methods, SMOTE				
5		Time Series Forecasting				
	5.1	Taxonomy of Time Series Forecasting methods, Time Series Decomposition				
	5.2	Smoothening Methods: Average method, Moving Average smoothing, Time series analysis using linear regression, ARIMA Model, Performance Evaluation: Mean Absolute Error, Root Mean Square Error, Mean Absolute Percentage Error, Mean Absolute Scaled Error	CO5	08		
		Optimization Techniques and Applications of Data Science				
6	6.1	Optimization: Global and local optima; Unconstrained and constrained optimization; Introduction to least-squares optimization	CO6	04		
	6.2	Predictive Modeling: House price prediction, Fraud Detection Clustering: Customer Segmentation,Use cases for Health care, Time series forecasting: Weather Forecasting, Recommendation engines: Product recommendation		04		
		Total		39		

Textb	oooks
1	Vijay Kotu, Bala Deshpande. "Data Science Concepts and Practice", Elsevier, M.K. Publishers.
2	Steven Skiena, "Data Science Design Manual", Springer International Publishing AG
3	Samir Madhavan. "Mastering Python for Data Science", PACKT Publishing
4	Dr. P. N. Arora, Sumeet Arora, S. Arora, Ameet Arora, "Comprehensive Statistical Methods", S.Chand Publications, New Delhi.
Refer	rences
1	Jake VanderPlas. "Python Data Science Handbook", O'reilly Publications.
2	Francesco Ricci, Lior Rokach, Bracha Shapira, Paul B. Kantor, "Recommender Systems Handbook", Springer.
3	S.C. Gupta, V. K. Kapoor "Fundamentals of Mathematical Statistics", S. Chand and Sons, New Delhi.

vatoriornesis Institute Affiliated to University of Mambai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

4	B.L.Agrawal. "Basic Statistics", New Age Publications, Delhi.
Usefu	l Links
1	https://onlinecourses.nptel.ac.in/noc22_cs32/preview
2	https://onlinecourses.nptel.ac.in/noc21_cs69/preview
3	https://www.coursera.org/specializations/applied-data-science
4	www.IntroDataScience.com.
5	https://rapidminer.com/
6	https://julialang.org/
7	https://towardsdatascience.com/machine-learning/home
AI T	òools
1	https://h2o.ai/
2	https://datasquirrel.ai/
3	https://flourish.studio/
Case	e Studies
1	https://www.analyticsvidhya.com/blog/2021/05/data-science-in-healthcare/
2	https://neptune.ai/blog
3	https://towardsdatascience.com/
Data	sets
1	https://www.kaggle.com/datasets
2	https://archive.ics.uci.edu/
3	https://data.gov/

Internal Assessment

Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks. The Mid Term test is to be conducted when approximately 50% syllabus is completed and its duration will be one hour.

Continuous Assessment

Continuous Assessment is of 20 marks. The rubrics for assessment will be considered upon approval by the subject teachers. It should be a minimum of 2 or a maximum of 4 from the following table

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotion Institute Affiliated to University of Manthai, Apprend by ALCITE & Recognized by Gord, of Maharadam)

Sr. No.	Rubrics	Marks					
1	Multiple Choice Questions (Quiz)	5 Marks					
2	Literature review of papers/journals	5 Marks					
3	Participation in event/workshop/talk/competition followed by a small report and certificate of participation relevant to the subject	5 Marks					
4	Wins in the event/competition/hackathon pertaining to the course	10 Marks					
5	Case study, Presentation, group discussion, technical debate on recent trends in the said course	10 Marks					
6	Project-based Learning and evaluation / Extra assignment / Question paper solution	10 Marks					
7	NPTEL/ Coursera/ Udemy/any MOOC Certificate course for 4 weeks	10 Marks					
8	Content beyond syllabus presentation	10 Marks					
9	Creating Proof of Concept	10 Marks					
10	Mini Project / Extra Experiments/ Virtual Lab	10 Marks					
11	GATE Based on Assignment tests/Tutorials etc	10 Marks					
12	Peer Review and participation	5/10 Marks					
	.7, the date of the certification exam should be within the term, and in case a st he certification, the grading has to be done accordingly.	udent is unable to					
Indirect A	ssessment						
1	Mock Viva/Practical/Quiz						
2	Skill Enhancement Lecture						
3	Extra Assignments/lecture						
End Seme	ster Theory Examination						
1	Question paper will be of 60 marks						
2	Question paper will have a total of five questions						
3	All questions have equal weightage and carry 20 marks each						
4	Any three questions out of five need to be solved.						

(An Autonomous Institute Affiliated to University of Mambai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

APPLIED DATA SCIENCE (Lab)

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned						
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total			
NCMPEL61	Applied data Science Lab	- 2 -		-	-	1		1			
	Course Name	Examin					nation Scheme				
Course			Theory		F						
Code		L Course Name	Internal	Assessment	End	Exam Duration	Term Work	Practical &	Total		
		Mid-Term Test	Continuous Assessment	Sem Exam	(in Hrs)		Oral				
NCMPEL61	Applied Data Science Lab	-	-	-	-	25	-	25			

Prerec	Prerequisite: Engineering Mathematics, Machine Learning, Programming fundamentals						
Lab O	Lab Objectives						
1	To explore various stages in the data science lifecycle.						
2	To understand data preparation, exploration and visualization techniques.						
3	To model and evaluate different supervised/unsupervised learning techniques						
Lab O	Lab Outcomes						
1	Apply various stages of the data science lifecycle for the selected case study.						
2	Apply inferential statistics, predictive analytics, and data mining to informatics-related field						
3	Demonstrate data preparation, exploration and visualization techniques.						
4	Implement and evaluate different supervised and unsupervised techniques.						

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gov. of Maharadam)

Sugges	ted Experiments: Students are required to complete at least 8 experiments.	
Sr.N o.	List of Experiment	LO Mapped
1	Explore the descriptive and inferential statistics on the given dataset.	LO1,LO2
2	Apply data cleaning techniques (e.g. Data Imputation)	LO1,LO3
3	Explore data visualization techniques.	LO3
4	Implement and explore performance evaluation metrics for Data Models (Supervised/Unsupervised Learning)	LO4
5	Use SMOTE technique to generate synthetic data.(to solve the problem of class imbalance)	LO1,LO3
6	Outlier detection using distance based/density based method.	LO3
7	Implement time series forecasting for Healthcare diagnosis	LO2,LO4
8	Illustrate data science lifecycle for selected case study. (Prepare case study document for the selected case study) Suggested Case Studies: 1. Customer Segmentation 2. Fraud Detection 3. House Price prediction 4. Product Recommendation 5. Stock price prediction 6. Weather prediction	LO1-LO4

Useful L	Useful Links:		
1	https://www.microsoft.com/en-in/download/details.aspx?id=45331		
2	https://rapidminer.com/		
3	https://www.knime.com/		

Term	Term Work:		
1	Term work should consist of at least 8 experiments.		
2	The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work.		
3	Total 25 Marks: (Minimum 10 Experiments - 15 marks, Assignment - 5 marks, Attendance - 5 marks (Theory+Lab)		

n Autonomous Institute Affiliated to University of Mambai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

Oral & Practical exam

Based on the entire syllabus of Applied Data Science course and Lab

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.L.C.T.E.& Recognized by Govt. of Maharashtra)

Department of Computer Engineering

COURSE NAME: GRAPHICS AND ANIMATION

Course Code	Course Name		eaching Scher Feaching Hou			Credits A	ssigned	
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMPE62	Graphics and Animations	3	2	-	3	1	-	4

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMPE62	Graphics and Animations	3	-	-	3	-	-	3
	Course Name	Examination Scheme						
Course Code			Theory		Exam Duratio	Term	Pract ical	Total
Code		Internal A	Assessment	End Sem	n	Work	& Oral	lotai
		Mid-Term Test	Continuous Assessment	End Sem Exam	(in Hrs)			
NCMPE62	Graphics and Animations	20	20	60	2	-	-	100

Prereq	Prerequisite: Knowledge of C Programming and Basic Mathematics		
Course	Course Objectives		
1	To equip students with the fundamental knowledge and basic technical competence in the field of computer graphics and animations.		
2	To emphasize on the implementation aspect of computer graphics algorithms.		
3	To prepare the student for advanced areas and professional avenues in the field of computer graphics and animations.		
4	To introduce the basics of graphics and animations in game development.		
	Outcomes: uccessful completion of the course, students will be able to:		
1	Describe the basic concepts of computer graphics and animations.		
2	Demonstrate various algorithms for basic graphics primitives and curve representation techniques.		
3	Apply 2D and 3D geometric transformations on graphical objects and demonstrate projection methods.		
4	Use various clipping algorithms on graphical objects and demonstrate visible surface detection techniques.		
5	Demonstrate the concept of Animation, its techniques and applications.		

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Malazashim)

Department of Computer Engineering

6 Understand the role of graphics and animation in game development.

Module		Content	СО	Hour s
	Int	roduction to Computer Graphics and Animations		
1	1.1	Introduction to computer graphics: Overview of coordinate system, pixel, screen resolution, aspect ratio, definition of scan conversion, rasterization, applications of graphics. Concept aliasing and anti-aliasing.	CO1	04
	1.2	Introduction to Animation : Definition, Need, and Importance of Animation, Applications of Animation, Principles of Animation, Types of Animation: 2D Animation, 3D Animation.		
	Out	out Primitives		
	2.1	Scan conversions of point, line, circle: DDA algorithm and Bresenham algorithm for line drawing, midpoint algorithm for circle		
2	2.2	Curves Generation: Bezier Curve, B-Spline Curve, Fractal-Geometry: Fractal Dimension, Koch Curve.	CO2	08
	2.3	Filled Area Primitive: Inside outside tests, Boundary Fill and Flood fill algorithm.		
	2D	and 3D Geometric Transformations		
	3.1	Basic transformations: 2D Transformations: Translation, Scaling, Rotation, Reflection and Shear, Matrix representation and Homogeneous Coordinates (2D)		
3	3.2	3D Transformations: Translation, Scaling, Rotation, Rotation about an arbitrary axis (3D), Matrix representation and Homogeneous Coordinates (3D)	CO3	09
	3.3	Composite Transformations (2D and 3D)		
	3.4	Viewing transformation pipeline and Window to Viewport coordinate transformation, Introduction to parallel and perspective projections		
	Two	Two-Dimensional Clipping and Visible Surface Detection		
	4.1	Clipping operations: Point clipping, Line clipping algorithms: Cohen- Sutherland, Liang: Barsky.		0.5
4	4.2	Polygon Clipping Algorithms: Sutherland- Hodgeman, Weiler-Atherton.	CO4	08

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gov. of Maharadam)

	4.3	Visible Surface Detection: Introduction, classification of visible surface detection algorithm Hidden Surface Removal, Application of Coherence, Back Face Elimination, Depth (Z) Buffer Algorithm, A-Buffer Algorithm, Depth Sorting (Painter's) Algorithm		
5	Anin	nation: Concepts, Techniques, and Applications		
	5.1	2D & 3D Animation Concepts : 2D animation, definition of 2D, characteristics of 2D, authoring tools for 2D animation, SWF, FLA, FLV, keyframe, editing keyframes, track views, trajectories, animation modifiers, hierarchies, animation helps and controls, morphing and wrapping.	CO5	05
	5.2	Basics of 3D Animation: Modeling, Skeleton & Kinetic Animation Concepts, 3D Camera Tracking and Special Effects, Motion Capture Methods, Formats, and Applications		
6	Intro			
	6.1	Fundamentals of graphics in game development: Introduction to game graphics, importance of graphics in gaming, evolution of game graphics (2D, 3D, HD, Ray Tracing), role of graphics in player immersion.		
	6.2	Game Art and Visual Design: Game assets: Sprites, textures, models, backgrounds, 2D vs. 3D graphics: Differences and use cases, Color theory and visual aesthetics in gaming.	CO6	05
	6.3	Animation Principles in Gaming: Fundamentals of Game Animation: Importance of animation in gameplay and storytelling, Keyframe animation vs. procedural animation Motion capture and physics-based animation, Character and Object Animation: Character rigging and skeletal animation, Animation techniques for game objects (particles, effects), Real-time vs. pre-rendered animation		
			Total	39

Textbo	Textbooks		
1	Hearn & Baker, "Computer Graphics C version", 2nd Edition, Pearson Publication		
2	James D. Foley, Andries van Dam, Steven K Feiner, John F. Hughes, "Computer Graphics Principles and Practice in C", 2 ndEdition, Pearson Publication		
3	Samit Bhattacharya, "Computer Graphics", Oxford Publication		
4	R. K Maurya, "Computer Graphics with Virtual Reality", Wiley India.		

tionomous Institute Affiliated to University of Mambui, Approved by ALC.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

5	Jeannie Novak, Game Development Essentials: An Introduction, Cengage Learning
Referei	nces
1	D. Rogers, "Procedural Elements for Computer Graphics", Tata McGraw-Hill Publications
2	Zhigang Xiang, Roy Plastock, "Computer Graphics", Schaum"s Outlines McGraw-Hill Education
3	Rajesh K. Maurya, "Computer Graphics", Wiley India Publication.
4	F.S.Hill, "Computer Graphics using OpenGL", Third edition, Pearson Publications.
5	Steve Marschner & Peter Shirley, Fundamentals of Computer Graphics, A K Peters/CRC Press
Useful L	inks
	Resources
1	Computer Graphics - NPTEL Course
2	ANIMATIONs - NPTEL Course
3	Rigging with Animation Industry's Techniques Udemy
4	https://www.coursera.org/learn/interactive-computer-graphics
5	Game Development Fundamentals Courses Udemy
	AI Tools
1	https://www.blender.org/
2	https://www.freecadweb.org/
3	<u>Generative AI – Adobe Sensei</u>
4	Runway Tools for human imagination.
5	Home prometheanai

Internal Assessment:

Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks. The Mid Term test is to be conducted when approximately 50% syllabus is completed and its duration will be one hour.

Autonomous Institute Affiliated to University of Mumbai, Approved by A.LC.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

Continuous Assessment:

Continuous Assessment is of 20 marks. The rubrics for assessment will be considered upon approval by the subject teachers. It should be a minimum of 2 or a maximum of 4 from the following table

No.	Rubrics	Marks	
1	Multiple Choice Questions (Quiz)	5 Marks	
2	Literature review of papers/journals	5 Marks	
3	Participation in event/workshop/talk/competition followed by a small report and certificate of participation relevant to the subject	5 Marks	
4	Wins in the event/competition/hackathon pertaining to the course	10 Marks	
5	Case study, Presentation, group discussion, technical debate on recent trends in the said course	10 Marks	
6	Project-based Learning and evaluation / Extra assignment / Question paper solution	10 Marks	
7	NPTEL/ Coursera/ Udemy/any MOOC Certificate course for 4 weeks	10 Marks	
8	Content beyond syllabus presentation	10 Marks	
9	Creating Proof of Concept	10 Marks	
10	Mini Project / Extra Experiments/ Virtual Lab	10 Marks	
11	GATE Based on Assignment tests/Tutorials etc	10 Marks	
12	Peer Review and participation	5/10 Marks	
	no.7, the date of the certification exam should be within the term, and in case a state the certification, the grading has to be done accordingly.	udent is unable to	
Indirect	Assessment:		
1	Skill Enhancement Lecture		
2	Extra Assignments/lab/lecture		
End Sei	nester Theory Examination:		
1	Question paper will be of 60 marks		

2 Question paper will have a total of five questions	2	Question paper will have a total of five questions
--	---	--

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotion Institute Affiliated to University of Manthai, Apprend by ALCITE & Recognized by Gord, of Maharadam)

3	All questions have equal weightage and carry 20 marks each
4	Any three questions out of five need to be solved.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtm)

Department of Computer Engineering

GRAPHICS AND ANIMATION (Lab)

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total	
NCMPEL62	Graphics and Animations lab	-	2	-	-	1	-	1	
		Examination Scheme							
Course	~ · ·		Theory			Practical &	Total		
Code	Course Name	Internal	Assessment		Term Work				
		Mid-Term Test	Continuous Assessment		(in Hrs)		Oral		
NCMPEL62	Graphics and Animations Lab	-	-	-	-	25	-	25	

Prere	Prerequisite: Knowledge of C Programming.					
Lab C	Lab Objectives:					
1	Understand the need of developing graphics and animation applications.					
2	Learn algorithmic development of graphic primitives.					
3	Learn the representation of graphical images and animate them.					
Lab	Lab Outcomes: Students will be able to					
1	Develop an understanding of fundamental graphics concepts and their implementation in programming.					
2	Implement various algorithms for rendering output primitives in computer graphics.					
3	Apply transformation matrices to manipulate objects and create complex graphical scenes.					
4	Implement clipping algorithms and generate smooth curves for efficient and visually appealing graphics.					
5	Develop skills in basic animation techniques					
6	Utilize programming skills to develop interactive graphics applications using appropriate tools and algorithms.					

Г

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotors Institute Affiliated to University of Manthai, Apprend by ALCIE & Recognized by Gov. of Maharadam)

Department of Computer Engineering

Sugg	Suggested Experiments: Students are required to complete at least 10 experiments.						
Star (Star (*) marked experiments are compulsory.						
Sr. No.	List of Experiment						
1	Drawing basic primitives using C Functions.	LO1					
2	Implement DDA Line Drawing algorithm and Bresenham's Line algorithm.	LO2					
3	Implement the midpoint Circle algorithm.						
4	Implement Area Filling Algorithm: Boundary Fill, Flood Fill.	LO2					
5	Implement 2D Transformations: Translation, Scaling, Rotation, Reflection, and shear.	LO3					
6	Implement Line Clipping Algorithm: Cohen Sutherland / Liang Barsky.	LO4					
7	Implement Curve : Bezier for n control points	LO4					
8	Program to perform animation (such as Rising Sun, Moving Vehicle, Smileys, Screen Saver, etc.) (Using C)	LO5, LO6					
9	Program to perform animation of a ball bouncing while applying squash and stretch to show motion dynamics. (Unity, C#)	LO5					
10	Create a simple animated character that walks or jumps using sprite sheets. Using Unity (with C#), Godot (GDScript), or Pygame (Python)	LO5, LO6					
11	Create a new material and texture separately for three Game objects. Change the colour, material and texture of each Game object separately in the scene. (Use C#)	LO2					
12*	Experiments can be conducted using virtual labs.	LO1- LO6					

Textb	Textbooks:							
1	Hearn & Baker,"Computer Graphics C version", 2nd Edition, Pearson Publication							
2	James D. Foley, Andries van Dam, Steven K Feiner, John F. Hughes, "Computer Graphics Principles and Practice in C", 2 ndEdition, Pearson Publication							
3	Samit Bhattacharya, "Computer Graphics", Oxford Publication							
4	R. K Maurya, "Computer Graphics with Virtual Reality", Wiley India.							

٦

(An Autonomous Institute Affiliated to University of Mumboi, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

5	5 Jeannie Novak, Game Development Essentials: An Introduction, Cengage Learning				
Refer	ences:				
1	D. Rogers, "Procedural Elements for Computer Graphics", Tata McGraw-Hill Publications				

2	Zhigang Xiang, Roy Plastock, "Computer Graphics", Schaum"s Outlines McGraw-Hill Education					
3	Rajesh K. Maurya, "Computer Graphics", Wiley India Publication.					
4	F.S.Hill, "Computer Graphics using OpenGL", Third edition, Pearson Publications.					
5	Steve Marschner & Peter Shirley, Fundamentals of Computer Graphics, A K Peters/CRC Press					
Indir	Indirect Assessment: Quiz					

Useful L	Useful Links:					
Resourc	Resources:					
1	Computer Graphics - NPTEL Course					
2	ANIMATIONs - NPTEL Course					
3	Rigging with Animation Industry's Techniques Udemy					
4	https://www.coursera.org/learn/interactive-computer-graphics					
5	Game Development Fundamentals Courses Udemy					
6	Virtual Lab : <u>https://cse18-iiith.vlabs.ac.in/</u>					
AI Tools	S					
1	https://www.blender.org/					
2	https://www.freecadweb.org/					
3	<u>Generative AI – Adobe Sensei</u>					
4	Runway Tools for human imagination.					

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.LC.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

5 <u>Home | prometheanai</u>

Term	Term Work:						
1	Term work should consist of 10 experiments.						
2	Journal must include at least 2 assignments on content of theory						
3	The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.						
4	Total 25 Marks: (Minimum 10 Experiments - 10 marks, Mini project- 5 marks, Assignment -5 marks, Attendance- 5 marks (Theory+Lab)						

An Autonomous Institute Affiliated to University of Mumbri, Approved by A.LC.T.E.R. Recognized by Govt. of Maharashtni)

Department of Computer Engineering

COURSE NAME: SYSTEM SOFTWARE

Course Code	Course Code Course Name		Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total	
NCMPE63	System Software	3	2	-	3	1	-	4	

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned				
Course Code	Course Name	Theory	Practical	Tutorial	Theory	TW/P R	Tut	Total	
NCMPE63	System Software	3	-	_	3	_	-	3	
	Course Name	Examination Scheme							
Course		Theory			Exam		Practical &	Total	
Code	Course Name	Internal		Duration Term					
		Mid-Ter m Test	Continuous Assessment	Sem Exam	(in Hrs)	Work	Oral		
NCMPE63	System Software	20	20	60	2	2-		100	

Prer	Prerequisite: Theoretical computer science, Operating system. Computer Organization and Architecture					
Cou	Course Objectives					
1	To impart knowledge on roles and functionalities of system programs in contrast to application programs.					
2	To acquire foundational understanding of the structure, design, and working principles of assemblers, macro processors, linkers, and loaders.					
3	To comprehend the core concepts of compiler design, including its major components, essential algorithms, and the data structures involved.					
4	To recognize the importance of syntactic correctness in application programming and understand how the compiler's analysis phase interprets code to accurately capture the programmer's intent.					
5	To integrate the outcomes of the analysis phase for generating optimized object code, focusing on space efficiency and execution performance.					
Cou	rse Outcomes: Students will be able					
1	Recognize the need of various system programs within the software development environment.					
2	Apply the data structures in the design and implementation of assemblers.					
3	Identify the data structures utilized in the design of macro processors.					

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotors Institute Affiliated to University of Manthai, Apprend by ALCIE & Recognized by Gov. of Maharadam)

4	Compare different loaders and linkers and their contribution in developing efficient user applications.
5	Illustrate the foundational concepts and processes involved in the analysis phase of compiler design.
6	Interpret the working of techniques for intermediate code generation and machine code optimization in the synthesis phase of compiler design.

Module	Content			Hou rs
	Introduction to System Software			
1	1.1	Concept of System Software, Goals of system software, system program and system programming, Introduction to various system programs such as Assembler, Macro processor, Loader, Linker, Compiler, Interpreter, Device Drivers, Operating system, Editors, Debuggers.	CO1	02
	Asse	mblers		
2	2.1	Elements of Assembly Language programming, Assembly scheme, pass structure of assembler, Assembler Design: Two pass assembler Design and single pass Assembler Design for X86 processor, data structures used.	CO2	07
	Macros and Macro Processor			
3	3.1	Introduction, Macro definition and call, Features of Macro facility: Simple, parameterized, conditional and nested. Design of Two pass macro processor, data structures	CO3	06
	Loaders and Linkers			
4	4.1	Introduction, functions of loaders, Relocation and Linking concept, Different loading schemes, Design of Absolute loader, Introduction of Direct Linking Loader.	CO4	04
5	Compilers: Analysis Phase			
	5.1	Introduction to compilers, Phases of compilers:Lexical Analysis- Role of Finite State Automata in Lexical Analysis,Design of Lexical analyzer, data structures used.	CO5	10
	5.2	Syntax Analysis- Role of Context Free Grammar in Syntax analysis, Types of Parsers: Top down parser- LL(1), Bottom up parser- SR Parser, Operator precedence parser, SLR. Semantic Analysis, Syntax directed definitions.		

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gov. of Maharadam)

	Con	npilers:Synthetic phase		
6	6.1	Intermediate Code Generation: Types of Intermediate codes: Syntax tree, Postfix notation, three address codes: Triples and Quadruples, indirect triple. Code Optimization: Need and sources of optimization, Code optimization techniques: Machine Dependent and Machine Independent. Code Generation: Issues in the design of code generator, code generation algorithm. Basic block and flow graph.	CO6	10
		Total		39

Textb	Textbooks		
1	D. M Dhamdhere: Systems programming and Operating Systems, Tata McGraw Hill, Revised Second Edition.		
2	A. V. Aho, R. Shethi, Monica Lam, J.D. Ulman: Compilers Principles, Techniques and Tools, Pearson Education, Second Edition.		
3	J. J. Donovan: Systems Programming Tata McGraw Hill, Edition 1991		

Referen	References		
1	John R. Levine, Tony Mason & Doug Brown, Lex & YACC, O 'Reilly publication, second Edition		
2	D, M .Dhamdhere, Compiler construction 2e, Macmillan publication, second edition .		
3	Kenneth C. Louden, Compiler construction: principles and practices, Cengage Learning		
4	4 Leland L. Beck, System software: An introduction to system programming, Pearson publication, Third Edition		

Autonomous Institute Affiliated to University of Mumbai, Approved by A.LC.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

Useful	Useful Links		
1	https://nptel.ac.in/courses/106108052		
2	https://www.coursera.org/lecture/nand2tetris2/unit-4-1-syntax-analysis-5pC2Z		
Indust	Industry Articles		
1	https://www.researchgate.net/publication/262296881_Truffle_A_self-optimizing_runtime_system		
2	2 <u>https://llvm.org/devmtg/2017-02-04/</u>		
3	https://godbolt.org/		

Internal Assessment	
---------------------	--

Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks. The Mid Term test is to be conducted when approximately 50% syllabus is completed and its duration will be one hour.

Continuous Assessment

Continuous Assessment is of 20 marks. The rubrics for assessment will be considered on approval by the subject teachers. It should be minimum 2 or maximum 4 from the following table.

Sr. No	Rubrics	Marks
1	Multiple Choice Questions (Quiz)	5 Marks
2	Literature review of papers/journals	5 Marks
3	Participation in event/workshop/talk/competition followed by a small report and certificate of participation relevant to the subject	
4	Wins in the event/competition/hackathon pertaining to the course	
5	Case study, Presentation, group discussion, technical debate on recent trends in the said course	10 Marks
6	Project-based Learning and evaluation / Extra assignment / Question paper solution	10 Marks
7	NPTEL/ Coursera/ Udemy/any MOOC Certificate course for 4 weeks	10 Marks
8	Content beyond syllabus presentation	10 Marks
9	Creating Proof of Concept	10 Marks
10	Mini Project / Extra Experiments/ Virtual Lab	10 Marks

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotion Institute Affiliated to University of Manthai, Apprend by ALCITE & Recognized by Gord, of Maharadam)

11	GATE Based on Assignment tests/Tutorials etc	10 Marks			
12	Peer Review and participation	5/10 Marks			
	*For sr.no.7, the date of certification exam should be within the term and in case a student is unable to complete the certification, the grading has to be done accordingly.				
Indir	ect Assessment				
1	1 Mock Viva/Practical				
2	2 Skill Enhancement Lecture				
3	3 QUIZ				
End	End Semester Theory Examination				
1	1 Question paper will be of 60 marks				
2	Question paper will have a total of five questions				
3	All questions have equal weightage and carry 20 marks each				
4	Any three questions out of five need to be solved.				

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashtra)

Department of Computer Engineering

SYSTEM SOFTWARE (Lab)

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Course Coue		Theory	Practical	Tutoria l	Theory	TW/PR	Tut	Total
NCMPEL63	System Software Lab		02	Ι	_	1	_	1
	Course Name	Examination Scheme						
Course Code			Theory		Exam	Term	Practical	
Coue		Internal	Assessment	End	Duration (in Hrs)	Work	& Oral	Total
		Mid-Term Test	Continuous Assessment	Sem Exam	(01.	
NCMPEL63	System Software Lab					25	-	25

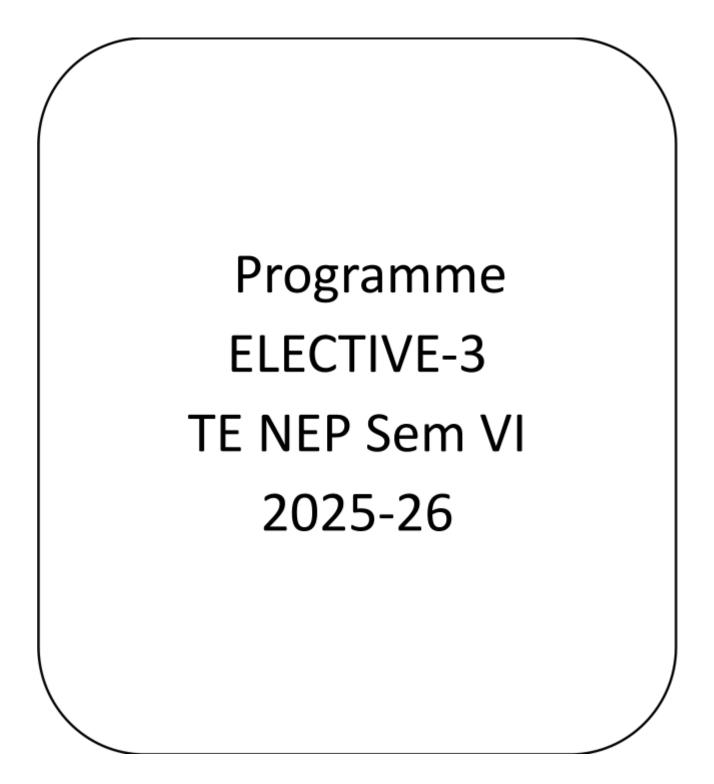
Prerequi	Prerequisite: Theoretical computer science, Operating system. Computer Organization and Architecture		
Lab Obj	Lab Objectives:		
1	To understand the basic concepts and designing of assembler and macro processor.		
2	To Explore the analysis and synthesis phase of the compiler.		
3	To understand the role of compiler generation tools like LEx and YACC.		
Lab Out	Lab Outcomes: At the end of the course, the students will be able to		
1	Generate machine code by implementing two pass assemblers.		
2	Implement a two pass macro processor.		
3	Parse the given input string by constructing Top down/Bottom-up parser.		
4	Identify and Validate tokens for given high level language and Implement synthesis phase of compiler.		
5	Demonstrate implementation phases of the compiler using LEX & YACC tools.		

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotors Institute Affiliated to University of Manthai, Apprend by ALCIE & Recognized by Gov. of Maharadam)

Suggested Experiments: Students are required to complete at least 10 experiments.			
Sr. No.	Name of the Experiment		
1	Implementation of Lexical Analyzer in C / Java / Python.	LO4	
2	 Implement Lexical Analyzer using FLEX a. Count no of Vowels & Consonants. b. Count no of Words, characters & lines c. Count no of keywords, identifiers & operators. d. Identify Even & odd integers. e. Count of printf & scanf statements in C program. f. Classify English words as verbs, adverbs, adjectives etc 	LO4, LO5	
3	Implementation of Left Recursion Removal.	LO3	
4	Write a program to find FIRST & FOLLOW Symbols for the given grammar.	LO3	
5	 Implement Syntax Analyzer(LL1) using C / Java / Python a. Generate the Predictive Parsing Table (take FIRST and FOLLOW as input for any grammar). b. Perform Parsing action for valid & invalid inputs based on the Parsing Table Generated. 	LO3	
6	Implement programs using parser generator tool : YACC a. Implement Simple Calculator. b. Recognize nested 'If' statements and display levels. c. Write a program to recognize a valid variable in C language.	LO3	
7	Implement Operator Precedence Parser.	LO3	
8	Implement Intermediate Code Generation using LEX and YACC.	LO4, LO5	
9	Implement data structure for Pass-1 of Two Pass Assembler.	LO1	
10	Implement Pass-2 of Two Pass Assembler taking required data structure as input.	LO1	
11	Implement data structure for two Pass Macro-Processor.	LO2	

Useful Lin	Useful Links:	
1	https://gnuwin32.sourceforge.net/packages/flex.htm	
2	https://gnuwin32.sourceforge.net/packages/bison.htm	

(An Autonomous Institute Affiliated to University of Mambai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashim)


Department of Computer Engineering

3 <u>https://compiler-lab.web.app/docs</u>

Term	Term Work:							
1	Term work should consist of 10 experiments.							
2	The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work.							
3	Total 25 Marks (Experiments: 15-marks, Attendance: 5-marks, Assignment: 5-marks)							
	Oral & Practical exam Based on the entire syllabus of System Software and System Software Lab							

Autonomous Institute Affiliated to University of Mamitoi, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashtra)

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

COURSE NAME: NATURAL LANGUAGE PROCESSING AND GENERATIVE AI

Course Code	Course Name		eaching Scher Feaching Hou		Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total	
NCMPE64	Natural Language Processing and	3	2	-	3	1	-	4	
	Generative AI								

Course Code	Course Name		aching Scheme eaching Hours)			Credits	Assigned			
		Theory	Practical	Tutorial	Theory	TW/P R	Tut	Total		
NCMPE64	Natural Language Processing and Generative AI	3	-	-	3		-	3		
				Examina	tion Scheme	on Scheme				
Course	Course Name		Theory		Exam	Талин	Practical			
Code	Course Name	Internal Assessment		End	Duration	Term Work	&	Total		
		Mid-Term Test	Continuous Assessment	Sem Exam	(in Hrs)	WUIK	Oral			
NCMPE64	Natural Language Processing and Generative AI	20	20	60	2	-	-	100		

Prerequisite: Python programming,data structures and algorithms,machine learning concepts,probability and statistics,TCS

Course	Course Objectives						
1	To define natural language processing and to learn various stages of natural language processing.						
2	To describe basic concepts and algorithmic description of the main language levels: Morphology, Syntax, Semantics, and Pragmatics & Discourse analysis.						
3	Learn and apply both classical statistical and modern neural approaches to NLP, including sequence models and transformer architectures						
4	Design, implement, and evaluate NLP and generative AI systems for real-world applications						
5	Analyze and address ethical, social, and technical challenges in NLP and generative AI, including bias, fairness, privacy						
6	6 To learn advanced NLP techniques for developing real world NLP applications using LLM to solve real-world language processing problems						
Course	Outcomes: Students will be able to						

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autorement Institute Alffiliated to University of Manifest, Apprend by ALCIE & Recognized by Gord. of Maharadata)

ных полия линыма и сагненар от яника, другима вулала, та ж на органо ву сол, и т

1	Have a broad understanding of the field of natural language processing.
2	Apply NLP techniques like preprocessing, POS tagging, parsing, and semantic analysis.
3	Implement and fine-tune statistical and neural models (RNNs, LSTMs, transformers) for NLP tasks.
4	Design ,implement and evaluate LLMs for text generation, summarization, translation, and chatbots
5	Design prompts and apply prompt engineering to optimize LLM outputs.
6	Design prompts and apply prompt engineering to optimize LLM outputs to solve real-world language processing challenges.

Module		Content	CO	Hours
	Intr			
1	1.1	CO1	03	
	1.2	Basic Terms: Preprocessing, Tokenization, stemming, lemmatization		
	Le	vels of NLP Processing		
	2.1	Morphological Analysis - English Morphology, Derivational and Inflectional Morphology, FST		
2	2.2	Syntax Analysis - POS tagging, Tagset for English ,Generative Models, HMM, CRF, Parsers	CO2	08
	2.3	Semantic Analysis :Lexical Semantics, WordNet Relations among lexemes & their senses –Homonymy, Polysemy, Synonymy, Hyponymy;Semantic Ambiguity; Word Sense Disambiguation (WSD);Knowledge based approach(Lesk's Algorithm)		
	Pra	gmatic & Discourse Processing		
3	3.1	Pragmatic Analysis, Discourse processing, Reference Resolution, Reference Phenomena,	CO3	04
	3.2	Syntactic & Semantic constraint on coherence, Anaphora		
	Stat	istical and Neural NLP Models		
4	4.1	Statistical Language Models: N-grams, Smoothing, Perplexity Neural Networks for NLP: RNNs, LSTMs, GRUs	CO4	06

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gov. of Maharadam)

	4.2	Word Embeddings: Word2Vec, GloVe, FastText		
	Tra			
	5.1	Transformer Architecture and Attention Mechanism, Popular LLMs: BERT, GPT-4, RoBERTa, Meta LLaMA2, Google PaLM2		
5	5.2 Pretraining, Fine-tuning, and Transfer Learning, Dialogue Systems and Chatbots, Retrieval-Augmented Generation (RAG), Multilingual NLP		CO5	08
	5.3	Introduction to LangChain and LLM Environment Setup, Model Evaluation Metrics, Safety, Bias, Fairness, Privacy in LLMs, LLM applications.		
	Gene	erative AI, Prompt Engineering and Agentic AI		
	6.1	Introduction to Generative AI, Types of Generative AI Models (Variational AutoEncoders, Generative Adversarial Networks), Advantages and limitations of Generative AI,ChatGPTand Conversational AI		
6	6.2	Prompt Engineering prompts for LLM interaction, Prompt Templates, Techniques for crafting clear, concise, and informative prompts, Exploring advanced prompt engineering strategies (zero-shot learning, few-shot learning), and case studies: successful applications of prompt engineering.	CO6	10
	6.3	Introduction to Agentic AI,Distinction between traditional AI, LLMs, and agentic AI,Role of NLP in enabling agentic AI,Use cases: conversational agents, task-oriented agents, and collaborative agents in domains like hospitality, education, and customer service.		
			Total	39

Textbo	Textbooks							
1	Daniel Jurafsky, James H. Martin "Speech and Language Processing" Second Edition, Prentice Hall, 2008.							
2	Christopher D.Manning and Hinrich Schutze, "Foundations of Statistical Natural Language Processing", MIT Press, 1999.							
3	Julien Chaumond, Hamza Tahir, Antania Guli," LLM Engineer's Handbook", Packt Publication.							
4	Natural Language Processing with Transformers: Revised Edition by Lewis Tunstall, Leandro von Werra, and Thomas Wolf							
5	Prompt Engineering and ChatGPT, Russel Grant (Author), Jeremy Diener							

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gov. of Maharadam)

6	Karthikeyan Sabesan, Sivagamisundari, Nilip Dutta, "Generative AI for Everyone: Deep learning, NLP, and LLMs for creative and practical applications"
Refere	nces
1	Siddiqui and Tiwary U.S., Natural Language Processing and Information Retrieval, Oxford University Press, 2008.
2	Daniel M Bikel and ImedZitouni — Multilingual natural language processing applications: from theory to practice, IBM Press, 2013.
3	Alexander Clark, Chris Fox, Shalom Lappin — The Handbook of Computational Linguistics and Natural Language Processing, John Wiley and Sons, 2012.
4	Nitin Indurkhya and Fred J. Damerau, —Handbook of Natural Language Processing, Second Edition, Chapman and Hall/CRC Press, 2010.
5	Anjanava Biswas, <u>Wrick Talukdar</u> , 'Building Agentic AI Systems: Create intelligent, autonomous AI agents that can reason, plan, and adapt".
6	Steven Bird, Ewan Klein and Edward Loper, Natural language processing with Python: analyzing text with the natural language toolkit, O Reilly Media, 2009.
Resou	rces
1	http://www.cse.iitb.ac.in/~cs626-449
2	http://cse24-iiith.virtual-labs.ac.in/#
3	https://nptel.ac.in/courses/106105158
4	https://promptengineering.org/
AI Too	lls
1	https://www.crewai.com/
2	https://bolt.new/
3	https://aistudio.google.com/prompts/new_chat
Industr	y Articles
1	https://arxiv.org/list/cs.AI/recent
2	https://www.accelirate.com/agentic-ai-use-cases/
Case St	udies
1	https://www.moveworks.com/us/en/resources/blog/agentic-ai-examples-use-cases
2	https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders

atoriornous Institute Affiliated to University of Mambui, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashtra)

Department of Computer Engineering

Internal Assessment

Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks. The Mid Term test is to be conducted when approximately 50% syllabus is completed and its duration will be one hour.

Continuous Assessment

Continuous Assessment is of 20 marks. The rubrics for assessment will be considered upon approval by the subject teachers. It should be a minimum of 2 or a maximum of 4 from the following table

Sr. No.	Rubrics	Marks					
1	Multiple Choice Questions (Quiz)	5 Marks					
2	Literature review of papers/journals	5 Marks					
3	Participation in event/workshop/talk/competition followed by a small report and certificate of participation relevant to the subject	5 Marks					
4	Wins in the event/competition/hackathon pertaining to the course	10 Marks					
5	Case study, Presentation, group discussion, technical debate on recent trends in the said course						
6	Project-based Learning and evaluation / Extra assignment / Question paper solution	10 Marks					
7	NPTEL/ Coursera/ Udemy/any MOOC Certificate course for 4 weeks	10 Marks					
8	Content beyond syllabus presentation	10 Marks					
9	Creating Proof of Concept	10 Marks					
10	Mini Project / Extra Experiments/ Virtual Lab	10 Marks					
11	GATE Based on Assignment tests/Tutorials etc	10 Marks					
12	Peer Review and participation	5/10 Marks					
	no.7, the date of the certification exam should be within the term, and in case a studer te the certification, the grading has to be done accordingly.	nt is unable to					
Indirect	Assessment						
1	Quiz						
2	Skill Enhancement Lecture						
3	Extra Assignments/lecture						
End Ser	nester Theory Examination						
1	Question paper will be of 60 marks						
2	Question paper will have a total of five questions						

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotion Institute Affiliated to University of Manthai, Apprend by ALCITE & Recognized by Gord, of Maharadam)

3	All questions have equal weightage and carry 20 marks each
4	Any three questions out of five need to be solved.

Autonomous Institute Affiliated to University of Mumbai, Approved by A.LC.T.E & Recognized by Govt. of Maharashtm)

Department of Computer Engineering

NATURAL LANGUAGE PROCESSING AND GENERATIVE AI (Lab)

Course	Course Name	Teaching Scheme (Teaching Hours)Credits Assigned				signed	-	
Code	Course Name	Theory	Practical	Tutoria l	Theory	TW/PR	Tut	Total
NCMPEL64	Natural Language Processing And Genetic AI Lab		2			1		1
		Examination Scheme						
Course	Course Name	Theory			Exam	Term	Practi cal	
Code	e	Internal	Assessment	End	Duration	Work	&	Total
		Mid-Term Test	Continuous Assessment	Sem Exam	(in Hrs)		Oral	
NCMPEL64	Natural Language Processing And Genetic AI Lab					25		25

Prerequisite: Java/Python				
Lab Ol	ojectives:			
1	To understand the key concepts of NLP.			
2	To learn various phases of NLP.			
3	To design and implement various language models and POS tagging techniques			
4	To understand various NLP Algorithms.			
5	To learn NLP applications such as Information Extraction, Sentiment Analysis, Question answering, Machine translation etc			
6	To design and implement applications based on natural language processing using LLM			
Lab O	atcomes: At the end of the course, the students will be able to			
1	Apply various text processing techniques.			
2	Design a language model for word-level analysis.			
3	Model linguistic phenomena with formal grammar and pos tagging.			
4	Design, implement, and analyze NLP algorithms.			

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gov. of Maharadam)

5	To apply NLP techniques to design real-world NLP applications such as machine translation, sentiment analysis, text summarization, Information extraction, Question Answering systems etc.
6	Implement a proper experimental methodology for training and evaluating empirical NLP systems using LLM

Sug	Suggested Experiments: Students are required to complete at least 10 experiments.					
Star	Star (*) marked experiments are compulsory.					
Sr. No.	Title of Experiment	LOs				
1	Study various applications of NLP in NLP in cybersecurity, healthcare, finance, social media and marketing, education, law and government	LO1				
	Formulate the Problem Statement for Mini Project based on chosen real world NLP applications: [Machine Translation, Text Categorization, Text summarization, chat Bot, Plagiarism, Spelling & Grammar checkers, Sentiment / opinion analysis, Question answering, Personal Assistant, Tutoring Systems, etc.]					
2	Text Preprocessing and Normalization - Preprocess, Clean and prepare raw text for NLP tasks.:Tokenization, lowercasing, stopword removal, stemming, lemmatization	LO2				
3	Morphological Analysis ,POS Tagging and EDA: Implement the N-Gram model for the given text input. Perform POS tagging on the given text, Perform exploratory data analysis of a given text (Word Cloud)/ topic modeling/chunking	LO3				
4	Named Entity Recognition (NER) Extract entities (names, places, organizations) from text using spaCy, Hugging Face Transformers	LO4				
5	Sentiment Analysis Using Neural Networks Classify text sentiment using deep learning. use PyTorch or TensorFlow, Hugging Face Transformers,RNN/LSTM/GRU for sentiment classification	LO5				
6	Fine Tuning Transformer models: Fine-tuning Transformer Models for Text Classification/Topic modeling /Paraphrase Detection with BERT	LO5,LO6				
7	Prompt Engineering and Output Evaluation with LLMs Design and test prompts for generative AI tasks.Design, test, and compare different prompt strategies (zero-shot, few-shot, chain-of-thought) to optimize LLM responses for a specific task, such as summarization or question answering.	LO5,LO6				

(An Autonomous Institute Affiliated to University of Mumbri, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashim)

8	Build a custom Chabot Build a custom chatbot for documents /website using LLM /MCQ generation using Lang Chain and LLM.	LO5,LO6
9	Agentic AI: Develop an agentic AI system using LangChain agents that autonomously plans and executes multi-step tasks (e.g., research, data extraction, report generation) by chaining LLM calls and tool use.	LO5, LO6
10	Implementation of mini projects using LLM e.g. multilingual Chabot, music lyrics translation in regional language, news summarizer, chatbot assistance, sentiment analysis of mixed case languages etc for selected domains.	LO1 -LO6

Useful I	links
1	https://nptel.ac.in/courses/106105158
2	https://promptengineering.org/
3	https://huggingface.co/
Virtua	l Lab
1	http://www.cse.iitb.ac.in/~cs626-449
2	http://cse24-iiith.virtual-labs.ac.in/#
AI Tool	s
1	https://www.microsoft.com/en-us/microsoft-copilot/microsoft-copilot-studio
2	https://www.mindstudio.ai/
3	https://manus.im/app
4	https://relevanceai.com/

Term Work:					
1	Term work should consist of a minimum of 7 experiments and a Mini Project.				
2	The final certification and acceptance of term work ensure the satisfactory performance of laboratory work and minimum passing marks in term work.				
3	The final certification and acceptance of term work ensure the satisfactory performance of laboratory work and minimum passing marks in term work.				

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Govt. of Materiadaux)

	Total 25 Marks
4	(Experiments + Mini Project: 15-marks, Term work Assessment: 10-marks)

Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

COURSE NAME: GEOINFORMATICS

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMPE65	GeoInformatics	3	2	-	3	1	-	4

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMPE65	GeoInformatics (Theory)	3	-	-	3	-	-	3
	Examination Scheme							
Course Code	Course Name		Theory		Exam	Tour Worls	Practical	Tatal
Code		Internal Mid-Term Test	Assessment Continuous Assessment	End Sem Exam		Term Work	& Oral	Total
NCMPE65	Geoinformatics (Theory)	20	20	60	2	-	-	100

Prerequisite: Basic understanding of geography ,computer applications,Programming (Python/Java), and Data Structures

Cours	Course Objectives:				
1	To understand the fundamentals and applications of geospatial technologies.				
2	To develop proficiency in handling GIS and Remote Sensing tools.				
3	To introduce GPS and data modeling techniques.				
4	To analyze spatial data for various real-world problems.				
5	To implement geospatial programming techniques for automating GIS workflows				
Cours	Course Outcomes: Students will be able to :				
1	Understand basic concepts of Geoinformatics and its components.				
2	Apply GIS concepts to manage and analyze spatial data				

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automatica Latitude La University of Muniter, Apprend by ALCITE & Recognized by Gord, of Multiradum)

Der	partment	of	Computer	Engineering
	APPENDIAL CONTRACTOR OF CONTRACTOR OF CONTRACTOR CONTRA		Comparer	rendering.

3	Explain Remote Sensing principles, satellite sensors and data
4	Use GPS for data acquisition and integration.
5	Develop proficiency in geospatial programming using Python libraries
6	Understand and analyze the diverse applications and emerging technologies in Geoinformatics

Module		Content	СО	Hours	
	Fund	amentals of Geoinformatics			
	1.1	Introduction to Geoinformatics, Issues, scope, and importance of Geoinformatics. Evolution of Geoinformatics,			
1	1.2 S	Core technologies under GeoInformatics(GIS,Remote Sensing ,Global navigation and satellite navigation,Photogrammetry,Cartography etc.) Spatial databases.Open-source vs. proprietary tools (QGIS, ArcGIS, Google Earth Engine).	CO1	05	
	GIS	Fundamentals and Spatial Analysis			
2	2.1	GIS Data Types, Sources and Models/Vector (points, lines, polygons) and Raster, Spatial & Attribute Data	CO2	06	
	2.2	2.2 Map Projections & Georeferencing,GIS Analysis – Overlay, Buffer, Network Terrain			
	Rem	ote Sensing and Image Processing			
3	3.1	Basics of Remote Sensing – EMR, Platforms, Sensors, Satellite Systems (IRS, LANDSAT, MODIS)	CO3	06	
	3.2 Image Interpro	Image Interpretation Techniques, Digital Image Processing – Preprocessing, Classification			
	Glob	al Positioning System and GIS-Integration			
4	4.1	Introduction to GPS,Segments & Working Principles,GPS Data Acquisition, Error Sources and accuracy,GPS data formats.	CO4	07	
	4.2	Integration of GPS data into GIS, Quality Control and Error checking. Applications of GPS-GIS Integration.			

(An Autonomous Institute Affiliated to University of Mumbri, Approved by ALCIE & Recognized by Govt. of Maharashim) Department of Computer Engineering

	Spati	al Data Management and Programming Techniques						
5	5 5.1 Data Sources:Satellite data,Survey data,Field data.Shapefile KML.Meta data and standards.Cartography thematic mapping and virtechniques			09				
	5.2 Automating GIS workflows,Python libraries (Geopandas, Folium, PyProj),File I/O (reading/writing geospatial data: GeoJSON, Shapefiles),APIs for spatial data (e.g., OSMnx, Google Maps API).Geopandas: Vector data manipulation (buffers, overlays).							
	Appl	ications and Emerging trends		06				
6	6.1	Applications: Agriculture and Precision Farming, Forestry, Urban and Regional Planning,Disaster Risk Reduction and Management, Environmental Monitoring,Transportation, Water Resources ,Smart Cities and Infrastructure development etc,						
	6.2	Emerging Trends:Web GIS, Mobile GIS, Integration of AI and ML in Geoinformatics,Cloud GIS,Big data and GeoSpatial Analysis,UAV(Drones) in data collection,IOT with GIS.3D and 4D GIS.Blockchain in Geospatial data Management.						
Total								

Text	Textbooks:						
1	Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. – Remote Sensing and Image Interpretation, Wiley						
2	Burrough, P.A., & McDonnell, R.A. – Principles of Geographical Information Systems, Oxford University Press						
3	Chang, Kang-tsung – Introduction to Geographic Information Systems, McGraw-Hill						
Refer	rences:						
1	Jensen, J.R. – Introductory Digital Image Processing, Pearson						
2	Bolstad, Paul – GIS Fundamentals: A First Text on Geographic Information Systems						
3	Gorr, Wilpen L., and Kurland, Kristen S. – GIS Tutorial: Workbook for ArcGIS						

Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

Usefu	Useful Digital Links					
1	https://onlinecourses.nptel.ac.in/noc22_ce26/preview					
AI To	pols					
1	https://www.sentinel-hub.com/					
2	https://www.ibm.com/docs/en/environmental-intel-suite?topic=components-geospatial-analytics					
3	https://descarteslabs.com/products/deforestation					
Case	Studies					
1	https://earthengine.google.com/					
2	https://learn.arcgis.com/en/gallery/					
3	https://www.iirs.gov.in/edusat-education					
4	https://docs.mapbox.com/help/glossary/turf/					

Internal Assessment

Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks. The Mid Term test is to be conducted when approximately 50% syllabus is completed and its duration will be one hour.

Continuous Assessment

Continuous Assessment is of **20 marks.** The rubrics for assessment will be considered on approval by the subject teachers. It should be minimum 2 or maximum 4 from the following table.

Sr. No	Rubrics	Marks
1	Multiple Choice Questions (Quiz)	5 Marks
2	Literature review of papers/journals	5 Marks
3	Participation in event/ workshop/ talk / competition followed by small report and certificate of participation relevant to the subject	5 Marks
4	Wins in the event/competition/hackathon pertaining to the course	10 Marks
5	Case study, Presentation, group discussion, technical debate on recent trends in the said course	10 Marks

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotion Institute Affiliated to University of Manthai, Apprend by ALCITE & Recognized by Gord, of Maharadam)

6	Project based Learning and evaluation / Extra assignment / Question paper solution	10 Marks						
7	NPTEL/ Coursera/ Udemy/any MOOC Certificate course for 4 weeks or more	10 Marks						
8	Content beyond syllabus presentation 10 Marks							
9	Creating Proof of Concept 10							
10	Mini Project / Extra Experiments/ Virtual Lab	10 Marks						
11	Peer Review and participation 5/10 Mark							
	*For sr.no.7, the date of certification exam should be within the term and in case a student is unable to complete th certification, the grading has to be done accordingly.							
Indi	rect Assessment							
1	Mock Viva/Practical							
2	Skill Enhancement Lecture							
3	Extra Assignments/lab/lecture							
End	Semester Theory Examination:							
1	Question paper will be of 60 marks							
2	2 Question paper will have a total of five questions							
3	All questions have equal weightage and carry 20 marks each							
4	Any three questions out of five need to be solved.							

n Autonomous Institute Affiliated to University of Mamboi, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashtm)

Department of Computer Engineering

GEOINFORMATICS (Lab)

Course Code	Course Name		aching Scheme eaching Hours)					
		Theory	Practical	Tutorial	Theory	TW&PR	Tut	Total
NCMPEL65	Geoinformatics Lab	-	2	-	-	1	-	1
				Examina	ntion Scheme			
Course Code	Course Name		Theory		Exam Term		Practical & Oral	Total
Coue		Internal Assessment		End Sem	Duration Work	Work		
		Mid-Term Test	Continuous Assessment	Exam	(11115)		Orai	
NCMPEL65	Geoinformatics Lab	-	-	-	-	25	25	50

Prer	Prerequisite: Programming (Python/Java), and Data Structures						
Lab	Lab Objectives:						
1	To familiarize with GIS, Remote Sensing, and GPS tools.						
2	To practice image processing, spatial analysis, and data integration.						
3	To apply geospatial techniques for solving real-world problems.						
Lab	Lab Outcomes: At the end of the course, the students will be able to						
1	Understand and apply the fundamentals of GIS software and spatial data types.						
2	Acquire and import GPS data into GIS systems using mobile apps or GPS devices.						
3	3 Visualize and interpret spatial data using satellite images and mapping techniques.						
4	4 Perform basic spatial analysis operations using GIS tools.						
5	Conduct preprocessing and georeferencing of remote sensing data for improved accuracy.						
6	Apply GIS/RS/GPS tools for real-world applications through a mini project						

Suggested Experiments: Students are required to complete at least 10 experiments.

Star (*) marked experiments are compulsory.

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotion Institute Affiliated to University of Manthai, Apprend by ALCITE & Recognized by Gord, of Maharadam)

Sr. No.	List of THE Experiments	LOs						
1	Introduction to GIS Software (QGIS/ArcGIS) and Data Types (Vector/Raster)	LO1						
2	Map Projection and Coordinate system							
3	GPS Data Collection and import into GIS using Mobile Apps/Handheld GPS and Import into GIS							
4	Spatial data Visualization and Interpretation of Satellite Images	LO3						
5	GIS Spatial Analysis: Buffer, Overlay, and Query Operations	LO4						
6	Image Preprocessing of satellite data: Radiometric and Geometric Corrections							
7	GPS based survey and Mapping	LO2						
8	3D Visualization in GIS	LO8						
9	Georeferencing of Maps and Images: Topographic Maps or Satellite Images	LO5						
10	Cartography : Thematic Map design and layout	LO4						
11	 Mini Project: Application of GIS/RS/GPS for a Local Area Study (e.g., Urban Mapping) Mini Project Examples Flood-prone area mapping Vegetation mapping School/clinic site selection Urban green cover assessment 	LO6						

Term Work:							
1	Term work should consist of 10 experiments.						
2	Journal must include at least 2 assignments on content of theory and practical of "Geoinformatics"						
3	The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.						
4	Total 25 Marks (Experiments: 15-marks, Term work Assessment: 10-marks)						
Practic	Practical & Oral Exam						
	Based on the entire Syllabus of PEC Geoinformatics and Geoinformatics Lab, Total 25 Marks						

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashim)

Department of Computer Engineering

COURSE NAME: EMBEDDED SYSTEMS AND RTOS

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Coue		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
	Embedded	3	2	-	3	1	-	4
NCMPE66	systems and RTOS							

Course	Course Name		Feaching Schem Teaching Hours		Credits A	ssigned	gned			
Code		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total		
NCMPE66	Embedded systems and RTOS	3	-	-	3	-	-	3		
			-	ation Scheme						
Course	Course Name	Theory			Exam	Practi				
Code	Course maine	Internal Mid-Ter m Test	Assessment Continuous Assessment	End Sem Exam	Duration (in Hrs)	Term Work	cal & Oral	Total		
NCMPE66	Embedded systems and RTOS	20	20	60	2	-	-	100		

Prerequisite: C programming, Digital Logic & Computer Organization and Architecture			
Course Objectives:			
1	Understand the basic structure, components, and characteristics of embedded systems.		
2	Develop fundamental programming skills for microcontroller-based applications.		
3	Familiarize with embedded software development tools, techniques, and processes.		
4	Comprehend core concepts and features of real-time operating systems (RTOS).		
5	Design, implement, and analyze embedded systems using RTOS concepts through real-world case studies.		
Course (Course Outcomes: After successful completion of the course, students will be able to:		
1	Explain the architecture, application domains, and design challenges of embedded systems.		
2	Write basic programs for microcontroller-based embedded systems.		

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autorements Institute Affiliated to University of Manthai, Apprend by ALCIE & Recognized by Gord. of Maharadata)

3	Apply embedded software design methodologies and utilize development tools effectively.		
4	Describe real-time operating system principles such as multitasking, scheduling, and synchronization.		
5	Develop basic applications using RTOS constructs like tasks, semaphores, and queues. Analyze and propose solutions for real-world problems using embedded system design techniques.		
6			

Module	Conten	t	СО	Hours
1	Introdu	ction to Embedded Systems		
	1.1	What is an Embedded System, Characteristics, Embedded Systems Vs General-Purpose Computing Systems		
	1.2	Classifications of Embedded Systems	CO 1	06
	1.3	Quality attributes	1	
	1.4	Purpose of Embedded Systems		
	1.5	Major application areas of Embedded systems.		
2	Core Co	mponents and Communication Interfaces in Embedded Systems		
	2.1	Elements of the Embedded System		
	2.2	Core of the embedded systems: General-purpose and domain-specific processors, Memory, Sensors, Actuators, I/O subsystems.	CO2	07
	2.3	Communication Interfaces: Internal -I2C, SPI, UART, External - RS-232 and RS-485, USB		
	2.4	Embedded firmware		
3	Embedo	led Software Design and Tools		
	3.1	Introduction to Microcontrollers Difference between Microprocessor and Microcontroller, Overview of the 8051 microcontroller family, Applications of microcontrollers		
	3.2	8051 Architecture Block diagram of 8051, Description of components: ALU, registers, RAM, ROM, stack, PSW, etc. I/O ports and memory organization, Pin configuration, and functions	CO3	07

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gov. of Maharadam)

	3.3	8051 Instruction Set , Development Tools, and Debugging Data transfer instructions, Arithmetic instructions, Logical instructions, Bit manipulation instructions, Branching and looping, Use of simulators/emulators, Keil uVision IDE		
4	Real-Tin	ne Operating Systems (RTOS) Concepts		
	4.1	What is a Real-Time System? Hard vs Soft Real-Time		
	4.2	GPOS and RTOS		
	4.3	Task, processes and threads, Multiprocessing and multitasking.	CO4	07
	4.4	Task Scheduling, Scheduling Algorithms: Round Robin, Rate Monotonic, Earliest Deadline First		
	4.5	Task Synchronization: Mutex, Semaphore, Event Flags		
5	RTOS Pr	ogramming Fundamentals		
	5.1	Creating Tasks and Managing Priorities		
	5.2	Inter-task Communication: Queues, Pipes, Message Passing Interrupt Handling in RTOS Environment	CO5	07
	5.3	Memory Management: Static vs Dynamic		
	5.4	Timers and Delays in RTOS		
6	Embedded Product development Life cycle (EDLC) and trends in the Embedded Industry			
	6.1	Embedded Product Development Life Cycle (EDLC)	CO6	05
	6.2	Trends in embedded industry: Processor trends, Os trends, development language trends.		
		Т	otal	39

Textbooks:		
1	K.V.K.K. Prasad, Embedded/Real-Time Systems: Concepts, Design and Programming, Dreamtech Press, 1st Edition, 2003.	
2	Raj Kamal, Embedded Systems: Architecture, Programming and Design, McGraw-Hill Education, 3rd Edition, 2021.	
3	Shibu K.V., Introduction to EMBEDDED SYSTEMS, McGraw-Hill Education (India) Private Limited, 2014.	

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autorement Institute Affiliated to University of Manifest, Apprend by ALCIE & Recognized by Gord. of Maharadata)

<u>v</u> .	m bepartment of Computer Engineering
4	Jonathan W. Valvano, Embedded Systems: Introduction to Arm® Cortex [™] -M Microcontrollers, CreateSpace Independent Publishing, Volume 1, 5th Edition, 2020.
5	Jane W. S. Liu, Real-Time Systems, Pearson Education, 1st Edition, 2000.
6	Sriram V Iyer, Pankaj Gupta, "Embedded Real Time Systems Programming", Tata McGraw-Hill, 2004.
Refer	ences:
1	David. E. Simon, "An Embedded Software Primer", 1st Edition, Fifth Impression, Addison- Wesley Professional, 2007.
2	Michael Barr and Anthony Massa, Programming Embedded Systems: With C and GNU Development Tools, O'Reilly Media, 2nd Edition, 2006.
3	Edward Lamie, Real-Time Operating Systems: RTOS Explained, CRC Press, 1st Edition, 2016.
4	Andrew N. Sloss, Dominic Symes, and Chris Wright, ARM System Developer's Guide: Designing and Optimizing System Software, Morgan Kaufmann, 1st Edition, 2004.
5	Dr. P. R. Seshadri, The Design of the Real-Time Operating Systems, Wiley India Pvt. Ltd., 1st Edition, 2020.
Usefu	l Links
1	http://vlabs.iitkgp.ac.in/rtes/
2	http://vlabs.iitkgp.ernet.in/rtes/index.html
3	https://www.nielit.gov.in/calicut/content/lab-workshop-embedded-rtos
4	https://www.coursera.org/learn/real-time-embedded-systems-concepts-practices
AI To	ols
1	https://neuton.ai/

1	https://neuton.al/
2	https://www.labcenter.com/
3	https://visualgdb.com/

Internal Assessment:	
Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks. The Mid	1

atoriorness Institute Affiliated to University of Mumbai, Approved by A.LC.T.E.& Recognized by Govt. of Maharashtra)

Department of Computer Engineering

Term test is to be conducted when approximately 50% syllabus is completed and its duration will be one hour.

Continuous Assessment:

Continuous Assessment is of 20 marks. The rubrics for assessment will be considered upon approval by the subject teachers. It should be a minimum of 2 or a maximum of 4 from the following table

No.	Rubrics	Marks	
1	Multiple Choice Questions (Quiz)	5 Marks	
2	Literature review of papers/journals	5 Marks	
3	Participation in event/workshop/talk/competition followed by a small report and certificate of participation relevant to the subject	5 Marks	
4	Wins in the event/competition/hackathon pertaining to the course	10 Marks	
5	Case study, Presentation, group discussion, technical debate on recent trends in the said course	10 Marks	
6	Project-based Learning and evaluation / Extra assignment / Question paper solution	10 Marks	
7	NPTEL/ Coursera/ Udemy/any MOOC Certificate course for 4 weeks	10 Marks	
8	Content beyond syllabus presentation	10 Marks	
9	Creating Proof of Concept	10 Marks	
10	Mini Project / Extra Experiments/ Virtual Lab	10 Marks	
11	GATE Based on Assignment tests/Tutorials etc	10 Marks	
12	Peer Review and participation	5/10 Marks	
	r.no.7, the date of the certification exam should be within the term, and in case a stude the certification, the grading has to be done accordingly.	lent is unable to	
Indire	ct Assessment:		
1	Skill Enhancement Lecture		
2	Extra Assignments/lab/lecture		
3	Quiz		

End Semester Theory Examination:

1 Question paper will be of 60 marks

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gov. of Maharadam)

2	Question paper will have a total of five questions
3	All questions have equal weightage and carry 20 marks each
4	Any three questions out of five need to be solved.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashim)

Department of Computer Engineering

EMBEDDED SYSTEMS AND RTOS (Lab)

Course Code	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	TW/P R	Tut	Total
NCMPEL66	Embedded systems and RTOS Lab	-	2	-	-	1	-	1
		Examination Scheme						
Course	Course	Theory			Exam	Term	Practic	
Code	Name	Internal Assessment		End	Duration	Work	&	Total
		Mid-Term Test	Continuous Assessment	Sem Exam	(11113)		Oral	
NCMPEL66	Embedded systems and	-	-	-	-	25	-	25
	RTOS Lab							

Prereq	Prerequisite: C programming, Digital Logic and Computer Architecture.					
Lab Ol	Lab Objectives					
1	To introduce microcontroller programming and basic embedded system design.					
2	To practice device interfacing and peripheral control.					
3	To implement multitasking and task synchronization using RTOS.					
4	To develop and test real-time embedded applications.					
Lab O	Lab Outcomes: After successful completion of the labs, students will be able to:					
1	1 To program microcontrollers for basic input/output operations.					
2	To interface sensors, actuators, and communication modules.					
3	To create and manage tasks using RTOS features.					
4	To design and demonstrate real-time embedded projects.					

Sr. No.	List of the Experiment	LOs
1	Basic GPIO programming : Write and simulate a C program to blink an LED connected to a microcontroller GPIO pin.	LO1
2	Digital Input/Output: Interface a push-button switch and LED. Write a C program to toggle LED on button press.	LO1
3	Timer and PWM basics : Generate a PWM signal using a microcontroller timer and control the brightness of an LED.	LO2
4	Timer programming, avoiding delay loops : Develop and simulate a simple delay function using hardware timers (without using software loops).	LO2
5	UART serial communication : Interface a UART device: Write a program to transmit and receive data over UART.	LO2
6	Interrupt basics : Develop an Interrupt Service Routine (ISR) for external interrupt (e.g., button press triggering an interrupt).	LO2
7	Task creation and basic scheduling : Create two simple tasks using an RTOS (like FreeRTOS) and switch between them.	LO3
8	RTOS software timers : Implement a software timer task to periodically toggle an LED under an RTOS.	LO3
9	Queue mechanism for task communication : Demonstrate Inter-Task Communication using Message Queues (RTOS-based project)	LO3
10	Semaphore usage : Synchronize two tasks using a Semaphore. (e.g., controlling access to a shared resource).	LO3
11	Advanced RTOS concept : Priority Inversion Problem: Write a small simulation showing how priority inversion happens and solve it using priority inheritance in an RTOS.	LO3
12	Multiple tasks, queues, UART communication combined : Design a mini project: Periodically read a sensor (simulated), process the data in a task, and send output via UART using RTOS.	LO4

Textb	ooks:	
1	K.V.K.K. Prasad, <i>Embedded/Real-Time Systems: Concepts, Design and Programming</i> , Dreamtech Press, 1st Edition, 2003.	

(An Autonomous Institute Affiliated to University of Mumbri, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashim)

2	Raj Kamal, <i>Embedded Systems: Architecture, Programming and Design</i> , McGraw Hill Education, 3rd Edition, 2021.
3	Jonathan W. Valvano, <i>Embedded Systems: Introduction to Arm</i> ® Cortex™_M Microcontrollers, CreateSpace Independent Publishing, Volume 1, 5th Edition, 2020.
4	Jane W. S. Liu, Real-Time Systems, Pearson Education, 1st Edition, 2000.
5	Sriram V Iyer, Pankaj Gupta, "Embedded Real Time Systems Programming", Tata Mc Graw Hill, 2004.

Refer	References:						
1	David. E. Simon, "An Embedded Software Primer", 1st Edition, Fifth Impression, Addison-Wesley Professional, 2007.						
2	Michael Barr and Anthony Massa, <i>Programming Embedded Systems: With C and GNU Development Tools</i> , O'Reilly Media, 2nd Edition, 2006.						
3	Edward Lamie, Real-Time Operating Systems: RTOS Explained, CRC Press, 1st Edition, 2016.						
4	Andrew N. Sloss, Dominic Symes, and Chris Wright, ARM System Developer's Guide: Designing and Optimizing System Software, Morgan Kaufmann, 1st Edition, 2004.						
5	Dr. P. R. Seshadri, <i>The Design of the Real-Time Operating Systems</i> , Wiley India Pvt. Ltd., 1st Edition, 2020.						

Useful Links					
1	http://vlabs.iitkgp.ac.in/rtes/				
2	http://vlabs.iitkgp.ernet.in/rtes/index.html				
3	https://www.nielit.gov.in/calicut/content/lab-workshop-embedded-rtos				
4	https://www.coursera.org/learn/real-time-embedded-systems-concepts-practices				

AI To	ols
1	https://neuton.ai/

2	https://www.labcenter.com/
3	https://visualgdb.com/

(An Autonomous Institute Affiliated to University of Mambai, Approved by A.LC.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

COURSE NAME: DEEP LEARNING

Course Code	Course Name	Teaching Scheme (Teaching Hours)				Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total	
NCMMM61	Deep Learning	1	2	-	-	2	-	2	

Course Code	Course Name		eaching Schem Teaching Hours			Credits Assigned		
	Course Mame	Theory	Practical	Tutorial	Theory	TW/P R	Tut	Total
NCMMM61	Deep Learning	1	2	-	-	2	-	2
	Course Name	Examination Scheme						
Course		Theory			Exam	Term	Practical	
Code		Internal	Assessment	End	Duration	Work &	& Oral	Total
		Mid-Term	Continuous	Sem	n (in Hrs)		Orai	
		Test	Assessment	Exam				
NCMMM61	Deep Learning	-	-	-	-	50	25	75

Prei	Prerequisite: Basic mathematics and Statistical Concepts, Linear Algebra, and Machine Learning					
Co	Course Objectives:					
1	To learn the fundamentals of Neural networks.					
2	To gain an in-depth understanding of training Deep Neural Networks.					
3	To acquire knowledge of advanced concepts of Convolutional Neural Networks, Autoencoders, and Recurrent Neural Networks.					
4	Students should be familiar with the recent trends in Deep Learning.					
Co	Course Outcomes: At the end of the course learner will be able to					
1	Understand the concepts of deep neural networks.					
2	Train and optimize deep neural models.					
3	Apply supervised learning models such as CNNs for image-related tasks.					

4	Implement unsupervised models like autoencoders for representation learning.
5	Design and train sequential models like RNNs, LSTMs, and Transformers for sequence data.
6	Analyze and apply recent trends to real-world domains.

Module		Content	СО	Hours				
		Introduction to Deep Learning						
1	1.1	Fundamentals of Neural Networks, MLPs, Activation Functions, Loss Functions, Forward and Backward Propagation.	CO1	01				
		Training, Optimization, and Regularization of Deep Neural Networks						
2	2.1	2.1 Optimizers (SGD, Adam, AdamW) Regularization (Dropout, BatchNorm, Early Stopping) Learning Rate Schedulers						
		Supervised Deep Learning with CNN						
3	CNN Architecture, Filters,Pooling Modern Architectures: ResNet, EfficientNet Vision Transformers (ViTs) Introduction			03				
		Unsupervised Deep Learning and Autoencoders						
4	4.1	Autoencoders, Denoising, Sparse, Variational Autoencoders (VAE) - Applications in Anomaly Detection and Representation Learning	CO4	02				
_		Recurrent Neural Networks (RNNs)						
5	5.1	LSTM, Backpropagation Through Time (BPTT)	CO5	03				
6	6.1 GANs, Diffusion Models, Transfer Learning (VGG16, ResNet50, YOLOv8), Ethical AI and Responsible Deployment		CO6	02				
			Total	13				

Text Boo	Text Books:						
1	1 Ian Goodfellow, Yoshua Bengio, Aaron Lourville. —"Deep Learning", MIT Press Ltd, 2016						
2	Li Deng and Dong Yu, —"Deep Learning Methods and Applications", Publishers Inc.						

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autorement Institute All Barrenity of Manifest, Apprend by ALCIE & Recognized by Govt. of Maharabara)

Siles	a 1982
3	Satish Kumar, "Neural Networks: A Classroom Approach" Tata McGraw-Hill.
4	JM Zurada —"Introduction to Artificial Neural Systems", Jai Co Publishing House
5	M. J. Kochenderfer, Tim A. Wheeler. —"Algorithms for Optimization", MIT Press.
Referen	ce Books:
1	Buduma, N. and Locascio, N., —"Fundamentals of deep learning: Designing next-generation machine intelligence algorithms" 2017. O'Reilly Media, Inc.
2	FranLOis Chollet. —"Deep learning with Python" —(Vol. 361). 2018 New York: Manning.
3	Douwe Osinga. —"Deep Learning Cookbook", O'REILLY, SPD Publishers, Delhi.
4	Simon Haykin, "Neural Network- A Comprehensive Foundation"- Prentice Hall International, Inc
5	Charu. Aggarwal, "Neural Networks and Deep Learning", Springer, 1st Edition
6	S.N. Sivanandam and S.N. Deepa, "Principles of Soft Computing"- Wiley India
Useful	Links
1	https://nptel.ac.in/courses/106/106/106106184/
2	https://www.deeplearningbook.org/
3	https://www.coursera.org/specializations/deep-learning, https://course.fast.ai/

VIVEKANAND EDUCATION SOCIETY'S (An Automotores Institute Affiliated to University of Manthai, Approved by ALCITE & Recognized by Govt. of Mathematica)

Department of Computer Engineering

DEEP LEARNING (Lab)

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Coue	Ivanie	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMMM61	Deep Learning Lab	1	2	-	-	2	-	2
				Examin	ation Scheme	9		
Course	Course Name	Theory			Exam	Term	Practi cal	
Code		Internal Assessment		End Som	Duration (in Hrs)	Work	&	Total
		Mid-Term Test	Continuous Assessment	End Sem Exam	(111115)		Oral	
NCMMM61	Deep Learning Lab	-	-	-	-	50	25	75

Prere	Prerequisite: Python, R Programming, Analysis of Algorithms, Basic Mathematics				
Lab C	Dbjectives:				
1	To implement basic neural network models.				
2	To implement various training algorithms for feedforward neural networks.				
3	To design deep learning models for supervised, unsupervised, and sequence learning.				
Lab	Outcomes: At the end of the course, the students will be able to				
1	Implement basic neural network models.				
2	Design and train feedforward neural networks using various learning algorithms.				
3	Develop and evaluate convolutional neural networks (CNNs) for tasks involving image and spatial data processing.				
4	Construct and train autoencoders for unsupervised learning tasks, including dimensionality reduction and data reconstruction.				
5	Design and implement sequential models such as RNNs and LSTMs for time-series and sequence prediction tasks.				
6	Utilize and fine-tune pretrained deep learning models on real-world applications, demonstrating transfer learning and domain adaptation skills.				

Sugg	Suggested Experiments: Students are required to complete at least 8 experiments.				
Star (*) marked experiments are compulsory.					
Sr No	List of Experiments	LO			
1*	Build and train a Multi-layer Perceptron (MLP) on the MNIST dataset to classify handwritten digits.	LO1			
2*	Implement and compare activation functions (ReLU, LeakyReLU, Sigmoid, Tanh) and loss functions (MSE, CrossEntropy) for binary and multi-class tasks.	LO1LO2			
3*	To visualize and compare optimizers (SGD, Adam, RMSprop) on a synthetic dataset to understand convergence and training dynamics.	LO1LO2			
4*	To demonstrate overfitting on CIFAR-10 and apply regularization methods like dropout and weight decay (L2 penalty) to enhance generalization.	LO1LO2			
5*	Build a custom CNN and evaluate its performance on CIFAR-10 or TinyImageNet. Use visualization techniques (e.g., feature maps, confusion matrix).	LO3			
6*	Train a denoising autoencoder using noisy MNIST or Fashion-MNIST and evaluate.	LO4			
7*	Use LSTM on stock prices or weather data. Apply normalization, sliding window, and sequential prediction.	LO5			
8*	Use ResNet50 or MobileNetV2 with transfer learning on a custom image dataset (e.g., flower classification or cats vs. dogs). Analyze fine-tuning vs feature extraction.	LO6			
9	Implement a basic GAN or run an inference pipeline using a diffusion model (Stable Diffusion)	LO6			
10*	Mini Project	LO1 LO6			

Useful Links:	Use	eful	Lir	ıks:
----------------------	-----	------	-----	------

1	TensorFlow (<u>www.tensorflow.org</u>)
2	Keras (keras.io)
3	PyTorch (pytorch.org)
4	Scikit (<u>https://scikit-learn.org/stable/)</u>

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Becognized by Govt. of Maharashtm)

Department of Computer Engineering

5	OpenNN (<u>www.opennn.net</u>)				
6	Theano https://github.com/Theano/Theano				
7	Caffe https://caffe.berkeleyvision.org/				
Math	Links:				
1	ConvNet Playground(<u>https://github.com/fastforwardlabs/convnetplayground</u>)				
2	CNN (https://poloclub.github.io/cnn-explainer/)				
3	GAN (<u>https://poloclub.github.io/ganlab/</u>)				
4	https://github.com/openai/gym				
Virtua	ll Lab				
1	https://github.com/materialsvirtuallab/megnet				
Datase	Datasets				
1	Kaggle Datasets, ImageNet, CIFAR-10 and CIFAR-100, COCO Dataset, MNIST, UCI Machine Learning Repository, QM7 Dataset, QMOF Dataset, EDNet Dataset				

Term	work
1	Term work should consist of a minimum of 8 experiments and a Mini Project.
2	The final certification and acceptance of term work ensure the satisfactory performance of laboratory work and minimum passing marks in term work.
3	The final certification and acceptance of term work ensure the satisfactory performance of laboratory work and minimum passing marks in term work. Lab work (Total 50 Marks) • Experiments: 15 marks • Mini project : 25 marks • Attendance Theory & Practical: 05-marks, • Assignment: 05-marks
Practi	ical & Oral Exam

Based on the entire Syllabus of PCC Deep Learning and Deep Learning lab, Total 25 Marks

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashim)

Department of Computer Engineering

COURSE NAME: MOBILE APP DEVELOPMENT

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMVS61	Mobile App Development (Theory & Lab)	1	2	-	-	2	-	2

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned				
Coue		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total	
NCMVS61	Mobile App Development (Theory & Lab)	1	2	-	-	2	-	2	
	Course Name	Examination Scheme							
Course		Theory		-	Exam	Term Work	Practical &		
Code		Internal Assessment		End Sem	Duration			Total	
		Mid-Term Test	Continuous Assessment	Exam	(in Hrs)	WUIK	Oral		
	Mobile App								
NCMVS61	Development (Theory & Lab)	-	-	-	-	50	25	75	

Cours	Course Objectives: Students should be able to					
1	To orient students to understand the fundamentals of mobile app development					
2	To learn design and implement responsive and user-friendly mobile user interfaces					
3	To develop skills to manage data and integrate applications with external services using APIs					
4	To Learn techniques for debugging, optimizing performance, and ensuring application security.					
Cour	rse Outcomes: Students should be able to					
1	Set up the development environment and create basic mobile apps.					
2	Design and develop mobile applications with user-friendly interfaces.					
3	Implement local and remote data storage solutions.					
4	Integrate device-specific features like sensors, notifications, and media.					

5	Optimize mobile applications for performance and security.
6	Collaborate effectively using version control systems like Git for mobile app development.

Module	Content	со	Hours
	Introduction to Mobile App Development		
1	Overview of Mobile Platforms (Android, iOS, etc.), Mobile App Architecture, Setting Up the Development Environment (Android Studio/Xcode), Alternatives for Building Mobile Apps: Native vs. Hybrid Applications, Introduction to Kotlin/Swift,	CO1	02
	User Interface Design		
	Understanding Android Activities and Fragments: Linking Activities Using Intents., Adding and Managing Fragments Dynamically, Displaying Notifications in Android.		
2	Designing User Interfaces:Layouts and Views:LinearLayout,RelativeLayout,ConstraintLayout,TableLayout (Android),Storyboards and View Controllers (iOS),Specialized Views:TextView,Button,ImageView,ProgressBar,AutoCompleteTextView,Spinner,and ListViewEvent Handling:Buttons,Touch Events,and Gesture HandlingResponsive DesignandAdapting toDifferent Screen Sizes	CO2	03
3	Data Management and Integration		
	Local Storage (SQLite, Shared Preferences/Core Data),Introduction to Networking (HTTP Requests, JSON Parsing),Fetching Data from REST APIs, Content Providers: Accessing and Sharing Data	CO3	02
	Device Integration and Advanced Features		
4	Working with Sensors: GPS, Accelerometer, Gyroscope Media Handling: Accessing Camera, Audio, and Video, Notifications and Background Tasks Android Services: Started and Bound Services, iOS Background Modes and Notifications	CO4	03
	Performance Optimization and Testing		
5	Debugging and Performance Optimization, : Tools for Performance Optimization Android: Android Profiler: CPU, Memory, Network, and Energy Profiler., Memory Analysis Tool (MAT) for memory leaks., Systrace for advanced tracing.,	CO5	02

	iOS: Instruments : Time Profiler, Leaks, Allocations, Network, and Energy Instruments., XCTest for profiling performance., Testing Mobile Applications (Unit Testing, UI Testing) App Security Best Practices		
	Deployment and Maintenance		
6	Publishing Apps on Google Play Store/App Store, Version Control and Collaboration (Git, GitHub/Bitbucket), App Maintenance and Updates	CO6	01
	· · ·	Total	13

atomornous Institute Affiliated to University of Mumbai, Approved by ALCTE & Recognized by Govt. of Maharashtm)

Department of Computer Engineering

MOBILE APP DEVELOPMENT (Lab)

Perform	Perform any eight experiments					
Sr.No	List of experiments:					
1	Install and configure Android Studio or Xcode, and create your first "Hello, World!" application.					
2	Design a responsive user interface using LinearLayout, ConstraintLayout (Android), or Storyboards (iOS).					
3	Create an app with multiple screens using Intents and Fragments.					
4	Build an app with buttons and gesture handling for event-driven interactions.					
5	Save user data locally using SharedPreferences (Android) or Core Data (iOS).					
6	Create an app to fetch and display data from a REST API.					
7	Build an app that integrates a device sensor, such as GPS or accelerometer.Create an app with media handling to access and display images or videos.					
8	Implement notifications and background tasks using Android Services or iOS Background Modes.					
9	Implement push notifications: Use Firebase Cloud Messaging (Android) or APNs (iOS) for real-time updates.					
10	Create a database-backed app: Use SQLite or Room Database (Android) or Core Data with CloudKit (iOS).					
11	Integrate user authentication: Implement login and signup functionality using Firebase Authentication or OAuth.					
12	Implement background tasks: Use Android Services or iOS Background Modes for periodic or continuous tasks.					

Textb	Textbooks:					
1	1 Jerome DiMarzio, "Beginning Android Programming with Android Studio", 4 thEdition					
2	Iversen, J., Eierman, M. (2013). Learning Mobile App Development: A Hands-on Guide to Building Apps with IOS and Android. (n.p.): Pearson Education.					
3	3 Lewis, S., Dunn, M. (2019). Native Mobile Development: A Cross-Reference for IOS and Android. United States: O'Reilly Media.					
Refer	References:					

(An Autonomous Institute Affiliated to University of Mumbri, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashim)

1	Dawn Griffiths, David Griffiths, "Head First Android Development: A Brain-Friendly Guide", 2017.
2	Neil Smyth, "Android Studio 3.0 Development Essentials: Android", 8 th Edition.
3	Pradeep Kothari, "Android Application Development (With Kitkat Support)", Black Book 2014.

Useful	Useful Links			
1	https://developer.android.com/guide			
2	Develop App for Free <u>https://flutter.dev/</u>			
3	http://ai2.appinventor.mit.edu			
4	https://aws.amazon.com/mobile/mobile-application-development/			
AI Too	AI Tools			
1	https://www.figma.com/			
2	https://www.postman.com/			
3	https://github.com/			

Indirect	Indirect Assessment					
1	Mock Viva/Practical					
2	Skill Enhancement Lecture					
3	Extra Assignments/lab/lecture					
Term We	ork					
1	Term work should consist of 8 experiments.					
2	The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.					
3	Total 50 Marks Experiments: 15-marks, Case Study (UI Design): 10 marks, Assignments: 10 Marks, Mini Project Report : 10 Marks, Attendance: 5 Marks					
Practica	Practical & Oral Exam					
1	Mini Project : 25 Marks (Demo and Presentation)					

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.LC.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

CAPSTONE PROJECT

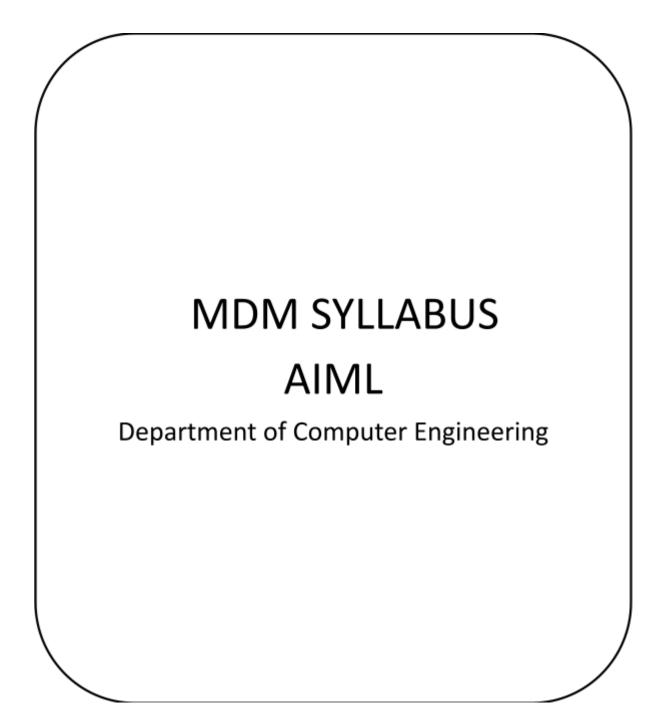
Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Coue		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMCP61	Capstone Project I	-	4	-	-	2	-	2
		Examination Scheme						
Course	Course Name	Theory			Enom		Practical	
Course Code		Interna Mid-Term Test	Assessment Continuous Assessment	End Sem Exam	Exam Duration (in Hrs)	Term Work	Oral	Total
NCMCP61	Capstone Project I	-	-	-	-	25	25	50

Prere	Prerequisite: Knowledge on number systems.				
Cour	Course Objectives				
1	Identify real-world problems and frame project requirements				
2	Design solutions using engineering concepts, research, and innovation.				
3	Develop and implement a prototype or detailed solution approach.				
4	Analyze results, interpret data, and optimize the solution.				
5	Communicate the project outcomes effectively through documentation and presentation.				
6	Demonstrate teamwork, ethics, and project management skills.				
Cour	se Outcomes: Students will be able				
1	Identify and define a real-world problem through systematic requirement analysis and investigation.				
2	Conduct a thorough literature review and benchmarking to propose innovative solutions.				
3	Develop a structured project plan with well-defined milestones, timelines, and risk mitigation strategies.				
4	Design and implement a working prototype using appropriate engineering tools and methods.				
5	Analyze experimental results, validate the solution, and optimize performance based on data.				
6	Effectively document and present the project outcomes, demonstrating professional ethics, teamwork, and project management skills.				

Module	Content	Hours
1	Introduction to Capstone Projects (overview, importance, types)	2
2	Problem Identification & Requirement Analysis	4
3	Literature Review & Benchmarking	4
4	Project Planning (Gantt charts, milestones, risk analysis)	3
5	Design Methodologies and Solution Architecture	5
6	Prototype Development (initial phase)	6
7	Implementation and Testing	6
8	Data Collection, Results, and Analysis	3
9	Report Writing (format, content, technical documentation)	3
10	Project Presentation (seminar, viva, poster)	3
	Total	39

Evaluation Measures:				
Component	Weightage			
Project Proposal Presentation	10%			
Interim Evaluation 1 (Design/Plan Stage)	15%			
Interim Evaluation 2 (Prototype Stage)	20%			
Final Project Demo & Viva	30%			
Project Report	15%			
Teamwork and Project Management Assessment	10%			

atoromous Institute Affiliated to University of Mamboi, Approved by ALC.T.E & Recognized by Govt. of Maharashtm)


Department of Computer Engineering

Deliverables:

- 1. Problem definition Document
- 2. Literature Review Report
- 3. Project Plan (Gantt Chart, Risk Analysis)
- 4. Prototype/Demo Videos
- 5. Test Cases and Results
- 6. Final Project Report (IEEE/University Format)
- 7. Presentation Slides
- 8. Poster (Optional)

Autonomous Institute Affiliated to University of Mumbui, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashtm)

MDM AIML Teaching Scheme TE CMPN								
Course	Course Code	Course Course name (Contact Hour		Teaching scheme (Contact Hours)		Credit	Total	
Туре	Code		Th	Pr	Tut	Th	Pr/Tut	
MDM	NCMMM51/ NCMMML51	Course 3	3	2	-	3	1	4
MDM	NCMMM61	Course 4	1	2	-	-	2	2

	MDM AIML Examination Scheme TE CMPN								
			Theory						
Course Type	Course Code	Course Name	A		End Sem	Exam Duration	Term Work	Pract & oral	Total
			Mid Test	CA	Exam	(in Hrs)			
MDM	NCMMM51/ NCMMML51	Course 3	20	20	60	2	25	25	150
MDM	NCMMM61	Course 4	-	-	-	-	50	25	75

Autonomous Institute Affiliated to University of Mumbai, Approved by A.LC.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

COURSE NAME: MDM Course 3 MACHINE LEARNING SEM V

Course Code	Course Name		eaching Sche Feaching Hou		Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMMM51	Machine Learning	3	2	-	3	1	-	4

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMMM51	Machine Learning	3	-	-	3	1	-	4
		Examination Scheme						
Course		Theory			Exam		Practical	
Code	Course Name	Internal	Assessment	End Sem	D	Term Work		Total
		Mid-Term Test	Continuous Assessment	End Sem Exam				1000
NCMMM51	Machine Learning (Theory)	20	20	60	2	25	25	100

Prerequ	uisite: Data Warehousing and Mining					
Course	Course Objectives:					
1	Understand the fundamental concepts, types, and applications of Machine Learning.					
2	Apply dimensionality reduction techniques and assess model performance using appropriate metrics					
3	Implement supervised learning algorithms for regression and classification problems					
4	Apply unsupervised learning methods for clustering and association rule mining.					
5	Utilize ensemble learning strategies and model validation techniques.					
6	Gain familiarity with MLOps practices for deploying, monitoring, and maintaining machine learning models.					
Course	Outcomes:					
1	Understand the basics of Machine Learning, its types, and essential concepts.					
2	Apply dimensionality reduction techniques and evaluate performance metrics for ML algorithms.					
3	Implement supervised learning models for regression and classification problems.					

(An Autonomous Institute Affiliated to University of Mumbri, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashim)

4	Implement unsupervised learning techniques and evaluate clustering models.
5	Apply ensemble learning techniques and model validation strategies.
6	Understand and apply MLOps concepts for deploying, monitoring, and maintaining ML models.

Module	Cor	itent	со	Hours
1	Intro	duction to Machine Learning		
	1.1	Introduction to Machine Learning, Data Formats, ML Workflow: Data Preparation, Model Training, Model Evaluation, Train-Test-Validation Splits Data Formats in ML, Structured vs. Unstructured data, Applications of types of Machine Learning across various industries (e.g., Healthcare, Finance, Marketing, Robotics etc.)	CO1	05
	1.2	Overfitting and Underfitting, Bias-Variance Tradeoff, Model Generalization and Model Overfitting		
2	Dime	ensionality Reduction & Performance Measures		
	2.1	Importance of feature selection in improving model performance, PCA, LDA, Difference between PCA and LDA (Supervised vs Unsupervised), SVD	CO2	06
	2.2	Performance Measures: Classification Metrics (Accuracy, Precision, Recall, F1-Score, ROC-AUC), Regression Metrics (MSE, RMSE, MAE)		
3	Supe	rvised Learning		
	3.1	Regression: Linear, Polynomial, Ridge, Lasso, Regularization: L1 Regularization (Lasso), L2 Regularization (Ridge), Elastic Net, Decision Tree Regression.		
	3.2	Classification: Numericals on Decision Tree (ID3, CART), Logistic Regression	CO3	09
	3.3	Classification: Introduction to SVM, Support Vectors, Hyperplane, Margin, Linear SVM: Maximizing margin, Hard and Soft Margin SVM, Non-linear SVM and Kernel Trick		
4	Unsu	pervised Learning		
	4.1	Clustering types: Graph-based,:Minimum Spanning Tree (MST) Clustering, Model-based: Expectation-Maximization (EM), Density-based: DBSCAN	CO4	06
	4.2	Basics of Clustering Evaluation: Silhouette Score, Davies-Bouldin Index, Adjusted Rand Index (ARI)		

5	Ense	emble Learning		
	5.1	Concepts of Ensemble Learning, Advantages and challenges, Bias-Variance trade-off in ensembles, K-Fold Cross-validation	CO5	07
	5.2	Basics of Bagging and Boosting, Random Forest algorithm, Use cases and benefits, AdaBoost, Gradient Boosting, XGBoost overview and comparison, Stacking: layered models and meta-learners, Voting Classifier: hard vs. soft voting		
6	MLO	Dps & Deployment		
	6.1	Introduction to MLOps: Concept and workflow, Model serving basics, Batch vs. Online (real-time) deployment	COC	
	6.2	Model performance monitoring, Data drift and concept drift detection, Introduction to model retraining strategies, Updating deployed models.	CO6	06
		Т	otal	39

Textbo	ooks:
1	Peter Harrington, —Machine Learning n Action ^{II} , DreamTech Press
2	Ethem Alpaydın, —Introduction to Machine Learningl, MIT Press
3	Tom M. Mitchell, —Machine Learning McGraw Hill
4	Stephen Marsland, —Machine Learning An Algorithmic Perspectivel, CRC Press
5	Noah Gift & Alfredo Deza, Practical MLOps: Operationalizing Machine Learning, OREILLY
Refere	nces:
1	Han Kamber, —Data Mining Concepts and Techniquesl, Morgan Kaufmann Publishers
2	Dr. Deepali Vora, Dr. Gresha Bhatia, Python for Machine Learning projects
3	Margaret. H. Dunham, —Data Mining Introductory and Advanced Topics, Pearson Education
4	Kevin P. Murphy , Machine Learning — A Probabilistic Perspective
5	Machine Learning For Absolute Beginners: A Plain English Introduction (Second Edition), Oliver Theobald
6	Richard Duda, Peter Hart, David G. Stork, —Pattern Classification ^{II} , Second Edition, Wiley Publications.

Autoromous Institute Affiliated to University of Mumbai, Approved by ALC.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

7 Approaching (Almost) Any Machine Learning Problem, Abhishek Thakur

Usefu	ıl Digital Links
1	https://onlinecourses.nptel.ac.in/noc21_cs06/preview_
AI To	ools
1	https://onlinecourses.nptel.ac.in/noc25_cs46/preview
2	https://onlinecourses.nptel.ac.in/noc25_cs50/preview_
3	https://nptel.ac.in/courses/106106198?utm_source
4	https://www.coursera.org/specializations/machine-learning
Case	Studies
1	<u>https://mobidev.biz/blog/machine-learning-application-use-cases-manufacturing-industry?utm_sourc</u> <u>e</u>
2	https://www.businessinsider.com/ai-for-worker-site-safety-in-construction-2025-4?utm_source
3	https://www.coherentsolutions.com/insights/role-of-ml-and-ai-in-clinical-trials-design-use-cases-ben efits.
4	https://dataforest.ai/blog/practical-data-warehousing-successful-cases
5	https://www.datamation.com/big-data/data-mining-use-cases/

Internal Assessment

Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks. The Mid Term test is to be conducted when approximately 50% syllabus is completed and its duration will be one hour.

Continuous Assessment

Continuous Assessment is of **20 marks.** The rubrics for assessment will be considered on approval by the subject teachers. It should be minimum 2 or maximum 4 from the following table.

Sr. No	Rubrics	Marks
1	Multiple Choice Questions (Quiz)	5 Marks
2	Literature review of papers/journals	5 Marks
3	Participation in event/ workshop/ talk / competition followed by small report and certificate of participation relevant to the subject	5 Marks
4	Wins in the event/competition/hackathon pertaining to the course	10 Marks

5	Case study, Presentation, group discussion, technical debate on recent trends in the said course	10 Marks			
6	6 Project based Learning and evaluation / Extra assignment / Question paper solution				
7	NPTEL/ Coursera/ Udemy/any MOOC Certificate course for 4 weeks or more	10 Marks			
8	Content beyond syllabus presentation	10 Marks			
9	Creating Proof of Concept	10 Marks			
10	Mini Project / Extra Experiments/ Virtual Lab	10 Marks			
11	Peer Review and participation	5/10 Marks			
	no.7, the date of certification exam should be within the term and in case a student is una tification, the grading has to be done accordingly.	able to complet			
Indire	ct Assessment				
1	Mock Viva/Practical				
2	Skill Enhancement Lecture				
3	Extra Assignments/lab/lecture				
End So	emester Theory Examination:				
1	Question paper will be of 60 marks				
2	Question paper will have a total of five questions				
3	All questions have equal weightage and carry 20 marks each				
4	Any three questions out of five need to be solved.				

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashim)

Department of Computer Engineering

MDM Course 3 MACHINE LEARNING (Lab) SEM V

Course Code	Course Name		aching Scheme eaching Hours)			Credits A	ssigned				
		Theory	Practical	Tutorial	Theory	TW&PR	Tut	Total 1			
NCMMML51	Machine Learning Lab	-	2	-	-	1	-	1			
			-	Examina	ation Schen	n Scheme					
Course	C N		Theory		Exam		Practical				
Code	Course Name	Internal	Assessment	End Com	Duration	Term	&	Total			
		Mid-Term Test	Continuous Assessment	End Sem Exam	(in Hrs)	Work	Oral				
NCMMML51	Machine Learning Lab	-	-	-	-	25	25	50			

Lab Ob	Lab Objectives						
1	Understand and apply core ML algorithms on real-world datasets.						
2	Implement dimensionality reduction and supervised/unsupervised techniques.						
3	Evaluate ML models for classification, regression and clustering using performance metrics and validation methods.						
4	Apply ensemble learning strategies to improve model performance.						
5	Engage in case study-based analysis and propose and deploy simple ML models as solutions for real life problems.						

Lab Out	Lab Outcomes					
1	Implement and demonstrate fundamental ML algorithms.					
2	Perform dimensionality reduction and assess its impact on model performance.					
3	Apply regression and classification models and analyze results.					
4	Execute clustering techniques and evaluate clustering outcomes.					
5	Utilize ensemble methods and cross-validation techniques.					
6	Deploy a simple ML model and monitor it post-deployment.					

Exp No.	List of Experiments	LOS
1	Apply dimensionality reduction using PCA and LDA on a high-dimensional dataset and analyze feature importance and evaluate reduced feature set impact	LO2
2	Implementation of Linear, Polynomial or Ridge Regression and compare different regression techniques for prediction accuracy	LO3
3	Implement classification model using Logistic regression and evaluate performance measures	LO3
4	Build classification models using Decision Tree(CART) and compare performance metrics with logistic regression	LO3
5	Implement classification models using linear / nonlinear or kernelized SVM and compare their performance metrics	LO3
6	Implement ensemble models : Bagging, Random Forest and evaluate performance measures	LO5
7	Implement ensemble models : and Boosting: XG boost and compare the results	LO5
8	Apply cross-validation (K-Fold, Stratified) and compare ROC-AUC of models	LO5
9	Perform clustering using DBSCAN and evaluate using Silhouette Score	LO4
10	Deploy an ML model using Flask or Streamlit for basic web-based inference to build and deploy a simple interactive ML application	LO1

Term V	Term Work						
1	Term work should consist of at least 8 experiments.						
2 The final certification and acceptance of term work ensures satisfactory performance of la work and minimum passing marks in term work.							
3	Total 25 Marks (Experiments: 15-marks, Term work Assessment: 10-marks) Pract/oral : 25 marks						

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashim)

Department of Computer Engineering

COURSE NAME: MDM Course 4 DEEP LEARNING SEM VI

Course Code	Course Name	1	Teaching Sche Teaching Hou	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NCMMM61	Deep Learning	1	2	-	-	2	-	2

Course Code	Course Name		eaching Schem Feaching Hours			Credits Assigned		
	Course Name	Theory	Practical	Tutorial	Theory	TW/P R	Tut	Total
NCMMM61	Deep Learning	1	2	-	-	2	-	2
		Examination Scheme						
Course	Course Name		Theory		Exam	Term	Practical	T ()
Code		Internal	Assessment	End	Duration (in Hrs)	Work	& Oral	
		Mid-Term	Continuous	Sem			UTAI	
		Test	Assessment	Exam				
NCMMM61	Deep Learning	-	-	-	-	50	25	75

Prer	Prerequisite: Basic mathematics and Statistical Concepts, Linear Algebra, and Machine Learning						
Сог	Course Objectives:						
1	To learn the fundamentals of Neural networks.						
2	To gain an in-depth understanding of training Deep Neural Networks.						
3	³ To acquire knowledge of advanced concepts of Convolutional Neural Networks, Autoencoders, and Recurrent Neural Networks.						
4	Students should be familiar with the recent trends in Deep Learning.						
Сог	Trse Outcomes: At the end of the course learner will be able to						
1	1 Understand the concepts of deep neural networks.						
2	2 Train and optimize deep neural models.						
3	Apply supervised learning models such as CNNs for image-related tasks.						

(An Autonome

4	Implement unsupervised models like autoencoders for representation learning.	
5 Design and train sequential models like RNNs, LSTMs, and Transformers for sequence data.		
6 Analyze and apply recent trends to real-world domains.		

Module		Content	СО	Hours
		Introduction to Deep Learning		
1	1.1	Fundamentals of Neural Networks, MLPs, Activation Functions, Loss Functions, Forward and Backward Propagation.	CO1	01
		Training, Optimization, and Regularization of Deep Neural Networks		
2	2 2.1 Optimizers (SGD, Adam, AdamW) Regularization (Dropout, BatchNorm, Early Stopping) Learning Rate Schedulers			
		Supervised Deep Learning with CNN		03
3		CNN Architecture, Filters, Pooling Modern Architectures: ResNet, EfficientNet Vision Transformers (ViTs) Introduction	CO3	
		Unsupervised Deep Learning and Autoencoders		02
4	4.1	Autoencoders, Denoising, Sparse, Variational Autoencoders (VAE) - Applications in Anomaly Detection and Representation Learning	CO4	
_		Recurrent Neural Networks (RNNs)		
5	5.1	LSTM, Backpropagation Through Time (BPTT)	CO5	03
6	6 6.1 GANs, Diffusion Models, Transfer Learning (VGG16, ResNet50, YOLOv8), Ethical AI and Responsible Deployment		CO6	02
		Total		13

Text Books:						
	1	Ian Goodfellow, Yoshua Bengio, Aaron Lourville. —"Deep Learning", MIT Press Ltd, 2016				
	2	Li Deng and Dong Yu, —"Deep Learning Methods and Applications", Publishers Inc.				

3	Satish Kumar, "Neural Networks: A Classroom Approach" Tata McGraw-Hill.
4	JM Zurada —"Introduction to Artificial Neural Systems", Jai Co Publishing House
5	M. J. Kochenderfer, Tim A. Wheeler. —"Algorithms for Optimization", MIT Press.
Reference	e Books:
1	Buduma, N. and Locascio, N., —"Fundamentals of deep learning: Designing next-generation machine intelligence algorithms" 2017. O'Reilly Media, Inc.
2	FranLOis Chollet. —"Deep learning with Python" —(Vol. 361). 2018 New York: Manning.
3	Douwe Osinga. —"Deep Learning Cookbook", O'REILLY, SPD Publishers, Delhi.
4	Simon Haykin, "Neural Network- A Comprehensive Foundation"- Prentice Hall International, Inc
5	Charu. Aggarwal, "Neural Networks and Deep Learning", Springer, 1st Edition
6	S.N. Sivanandam and S.N. Deepa, "Principles of Soft Computing"- Wiley India
Useful I	links
1	https://nptel.ac.in/courses/106/106/106106184/
2	https://www.deeplearningbook.org/
3	https://www.coursera.org/specializations/deep-learning, https://course.fast.ai/

An Autonomous Institute Affiliated to University of Mumbai, Approved by A.LC.T.E.& Recognized by Govt. of Maharashtra)

Department of Computer Engineering

MDM Course 4 DEEP LEARNING (Lab) SEM VI

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned				
Code	Ivame	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total	
NCMMM61	Deep Learning Lab	1	2	-	-	2	-	2	
		Examination Scheme							
Course	Course	Theory			Exam	Term	Practi cal &		
Code	Name	Internal Assessment		End Sem (in Hrs)		Work		Total	
		Mid-Term Test	Continuous Assessment	Exam	(11115)		Oral		
NCMMM61	Deep Learning Lab	-	-	-	-	50	25	75	

Prerec	Prerequisite: Python, R Programming, Analysis of Algorithms, Basic Mathematics						
Lab O	bjectives:						
1	To implement basic neural network models.						
2	To implement various training algorithms for feedforward neural networks.						
3	To design deep learning models for supervised, unsupervised, and sequence learning.						
Lab (Dutcomes: At the end of the course, the students will be able to						
1	Implement basic neural network models.						
2	Design and train feedforward neural networks using various learning algorithms.						
3	Develop and evaluate convolutional neural networks (CNNs) for tasks involving image and spatial data processing.						
4	Construct and train autoencoders for unsupervised learning tasks, including dimensionality reduction and data reconstruction.						
5	Design and implement sequential models such as RNNs and LSTMs for time-series and sequence prediction tasks.						
6	Utilize and fine-tune pretrained deep learning models on real-world applications, demonstrating transfer learning and domain adaptation skills.						

Star	(*) marked experiments are compulsory.	
Sr No	List of Experiments	LO
1*	Build and train a Multi-layer Perceptron (MLP) on the MNIST dataset to classify handwritten digits.	LO1
2*	Implement and compare activation functions (ReLU, LeakyReLU, Sigmoid, Tanh) and loss functions (MSE, CrossEntropy) for binary and multi-class tasks.	LO1L O2
3*	To visualize and compare optimizers (SGD, Adam, RMSprop) on a synthetic dataset to understand convergence and training dynamics.	LO1L O2
4*	To demonstrate overfitting on CIFAR-10 and apply regularization methods like dropout and weight decay (L2 penalty) to enhance generalization.	LO1L O2
5*	Build a custom CNN and evaluate its performance on CIFAR-10 or TinyImageNet. Use visualization techniques (e.g., feature maps, confusion matrix).	LO3
6*	Train a denoising autoencoder using noisy MNIST or Fashion-MNIST and evaluate.	LO4
7*	Use LSTM on stock prices or weather data. Apply normalization, sliding window, and sequential prediction.	LO5
8*	Use ResNet50 or MobileNetV2 with transfer learning on a custom image dataset (e.g., flower classification or cats vs. dogs). Analyze fine-tuning vs feature extraction.	LO6
9	Implement a basic GAN or run an inference pipeline using a diffusion model (Stable Diffusion)	LO6
10*	Mini Project	LO1 LO6

Usefu	Useful Links:					
1	TensorFlow (<u>www.tensorflow.org</u>)					
2	Keras (keras.io)					
3	PyTorch (pytorch.org)					

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashtni).

4	Scikit (<u>https://scikit-learn.org/stable/)</u>					
5	OpenNN (<u>www.opennn.net</u>)					
6	Theano https://github.com/Theano/Theano					
7	Caffe https://caffe.berkeleyvision.org/					
Math	Links:					
1	ConvNet Playground(<u>https://github.com/fastforwardlabs/convnetplayground</u>)					
2	CNN (https://poloclub.github.io/cnn-explainer/)					
3	GAN (<u>https://poloclub.github.io/ganlab/</u>)					
4	https://github.com/openai/gym					
Virtua	al Lab					
1	https://github.com/materialsvirtuallab/megnet					
Datas	ets					
1	Kaggle Datasets, ImageNet, CIFAR-10 and CIFAR-100, COCO Dataset, MNIST, UCI Machine Learning Repository, QM7 Dataset, QMOF Dataset, EDNet Dataset					

Term	work
1	Term work should consist of a minimum of 8 experiments and a Mini Project.
2	The final certification and acceptance of term work ensure the satisfactory performance of laboratory work and minimum passing marks in term work.
3	The final certification and acceptance of term work ensure the satisfactory performance of laboratory work and minimum passing marks in term work. Lab work (Total 50 Marks) • Experiments: 15 marks • Mini project : 25 marks • Attendance Theory & Practical: 05-marks, • Assignment: 05-marks
Pract	ical & Oral Exam
Based	on the entire Syllabus of PCC Deep Learning and Deep Learning lab, Total 25 Marks

n Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashtm)

	Open Elective 2							
Sr. No.	Sr. No. Course Code Course names							
	For Departments of AI & DS, CMPN, IT							
1	NOE506	Solid and Hazardous waste management						
2	NOE507	Fundamentals of Sustainability Engineering						
3	NOE508	Energy Audit and Management						
4	NOE509	Electric Vehicles						
5	5 NOE510 Industrial Automation							
6	NOE511	Fundamentals of Robotics						

	Open Elective 2 Teaching Scheme									
Course Type	Course Code	Course name	Teaching scheme (Contact Hours)			Credits	assigned	Total		
Type			Th	Pr	Tut	Th	Pr/Tut			
OE	NOE50X	Open Elective 2	3 - 1		4	-	4			

Open Elective 2 Examination Scheme										
Course Type	Course Code	Course Name	Theory Internal Assessment Sem			Exam Duration	Term Work	Pract & oral	Total	
			Mid Test	CA	Exam	(in Hrs)		0141		
OE	NOE50X	Open Elective 2	20	20	60	2	_	-	100	

An Autonomous Institute Affiliated to University of Mambai, Approved by ALCTE & Recognized by Govt. of Maharashim)

Department of Computer Engineering

COURSE NAME: SOLID AND HAZARDOUS WASTE MANAGEMENT

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned				
		Theory Practical Tutori al			Theory	TW/ PR	Tut	Tota l	
NOE506	Solid and Hazardous Waste Management	03		01	03		01	04	

Course Code	Course Name	Examination Scheme					
		Theory			Term	Practical	Total
		Internal Assessment		End Sem	Work	& Oral	
		Mid Term Test	СА	Exam			
NOE506	Solid and Hazardous Waste Management	20	20	60			100

Course Prerequisite:				
Course Objectives:				
1	To recognize the relevant regulations that apply for facilities used for disposal and destruction of waste.			
2	To provide in depth knowledge of municipal solid waste management			
3	To provide in-depth knowledge of hazardous waste management			
4	To provide in-depth knowledge of Physico-chemical processes useful for the treatment of municipal and solid wastes			
5	To provide in-depth knowledge of biological processes useful for the treatment of municipal and solid wastes.			

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gov. of Maharadam)

6	Know the necessity of environmental risk assessment.						
	Course Outcomes: After successful completion of the course students will be able to:						
1	Understand rules and regulations for handling solid waste.						
2	Understand principals of municipal solid waste management.						
3	Understand hazardous waste management.						
4	Learn physicochemical treatment of solid and hazardous waste.						
5	Understand biological treatment of solid and hazardous waste.						
6	Understand environmental risk assessment.						

Module	Content	Hrs
1	Rules and Regulations	5
	Municipal solid waste (management and handling) rules, hazardous waste (management and handling) rules, biomedical waste handling rules, fly ash rules, recycled plastics usage rules, batteries (management and handling) rules	
2	Municipal Solid Waste Management	6
	Need for management, sources, composition, generation rates, collection of waste, separation, transfer and transport of waste, treatment and disposal options, source reduction of wastes, recycling and reuse.	
3	Hazardous Waste Management	6
	Need for management, hazardous characterization of waste, compatibility and flammability of chemicals, waste sampling, TCLP tests, fate and transport of chemicals, health effects	
4	Physicochemical Treatment of Solid and Hazardous Waste	
	Chemical treatment processes for MSW (combustion, stabilization and solidification of hazardous wastes), physicochemical processes for hazardous wastes (soil vapour extraction, air stripping, chemical oxidation), ground water contamination and remediation	

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E.& Recogniz-

d by Govt. of Maharashtra)

Department of Computer Engineering

5	Biological Treatment of Solid and Hazardous Waste	10				
	Composting, bioreactors, anaerobic decomposition of solid waste, principles of biodegradation of toxic waste, inhibition, co-metabolism, oxidative and reductive processes, slurry phase bioreactor, in-situ remediation. Landfill design for solid and hazardous wastes, leachate collection and removal, landfill covers, incineration					
6	Environmental Risk Assessment	6				
	Defining risk and environmental risk, methods of risk assessment, case studies					
	Total	39				

Te	Textbooks:					
1	Tchobanoglous G., Theisen H. and Vigil S.A., "Integrated Solid Waste Management", McGraw-Hill International editions.					
2	Bhide A.D. and Sundaresan B.B., "Solid Waste Management, Collection, Processing and Disposal", Nagpur.					
3	"Manual on Municipal Solid Waste Management", CPHEEO, Ministry of Urban Development, Government of India.					
4	Management and Handling Rules for: municipal solid waste, biomedical waste, hazardous waste and radioactive wastes, Government of India Publications.					
5	Solid Waste Management Hand Book – Pavoni					

Internal Assessment:

1) Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.

2) Mid Term test is to be conducted when approx. 50% syllabus is completed. 3) Duration

of the midterm test shall be one hour.

Continuous Assessment:

Continuous Assessment is of 20 marks. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotors Institute Affiliated to University of Manthai, Apprend by ALCIE & Recognized by Gov. of Maharadam)

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/anyMOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
8.	Multiple Choice Questions (Quiz)	05 marks
9.	Peer Review and participation the marks can be left blank (with discretion of faculty)	05 Marks

Enc	End Semester Theory Examination:				
1	Question paper will be of 60 marks				
2	Question paper will have a total of five questions				
3	All questions have equal weightage and carry 20 marks each				
4	Any three questions out of five need to be solved.				

n Autonomous Institute Affiliated to University of Mambai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashtm)

Department of Computer Engineering

COURSE NAME: FUNDAMENTALS OF SUSTAINABILITY ENGINEERING

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			ł
		Theory	Practical	Tutorial	Theor y	TW/ PR	Tut	Total
NOE507	Fundamentals of Sustainability Engineering	03		01	03		01	04

Fundamentals of Sustainability Engineering

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/ PR	Tut	Total
NOE507	Fundamentals of Sustainability Engineering	03		01	03		01	04

Course	Course Name	Examination Scheme							
Code		ſ	Theory			Practical &	Total		
		Intern Assessr		End Sem	Oral				
		Mid-Te rm Test	CA	Exam					
NOE507	Fundamentals of Sustainability Engineering	20	20	60			100		

tonomous Institute Affiliated to University of Mamboi, Approved by A.I.C.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

Rationale: This course contains content that address sustainability issues and innovations of relevance to the discipline area. Sustainability content (principles and theory) is well integrated into the course. The course outline specifically addresses the sustainability content.

Cours	Course Objectives:						
1	To acquire knowledge and awareness among students on issues in areas of sustainability.						
2	To understand the role of engineering Environmental Pollution and Environmental legislations in India.						
3	To understand the International Environmental Management Standards.						
4	To apply a clear understanding of the role and impact of various aspects of engineering and engineering decisions on environmental, societal, and economic problems.						
5	To analyse the Sustainable Engineering.						
6	To evaluate the Sustainable Assessment Systems.						

	Course Outcomes: After successful completion of the course students will be able to:						
1	To explain issues in areas of sustainability.						
2	To summarize the role of engineering Environmental Pollution and Environmental legislations in India.						
3	To interpret the International Environmental Management Standards.						
4	To relate a clear understanding of the role and impact of various aspects of engineering and engineering decisions on environmental, societal, and economic problems.						
5	To connect the Sustainable Engineering						
6	To develop the Sustainable Assessment Systems.						

Fundamentals of Sustainability Engineering

(An Autonomous Institute Affiliated to University of Mumbai, Approved by ALC.T.E.& Recognized by Govt. of Maharashim)

Module		Content	Hrs
1		Introduction to Sustainability	6
	1.1	Sustainability-Introduction, Historical Evolution-Goals of Sustainable Development-Principles of Sustainability-Sustainability-need and concept, challenges.	
	1.2	Social, Environmental and Economic sustainability concepts	
	1.3	Sustainable development, Nexus between Technology and Sustainable development, Challenges for Sustainable Development.	
	1.4	Multilateral environmental agreements and Protocols-Clean Development Mechanism (CDM)	
2		Environmental Pollution and Environmental legislations in India	7
	2.1	Regional and Local Environmental Issues-Air Pollution, Sources- Effects Preventative Measures of Air Pollution; Water pollution- Land Pollution	
	2.2	Sustainable wastewater treatment, Solid waste - sources, impacts of solid waste, Zero waste concepts, 3 R concept	
	2.2	Environmental legislations in India-Water Act, Air (Pollution & Prevention) Act	
	2.4	Environmental Protection Act and Climate Change Act	
	2.5	Forest Act, Animal Protection Act, Factory Act, Labour Act	

	2.6	SEZ Notifications, CRZ Notifications etc						
3		International Environmental Management Standards	7					
	3.1	International Environment Acts and Protocols, Global, Regional and Local environmental issues, Natural resources and their pollution, Carbon credits, Carbon Trading, Carbon FootPrint						

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autorements Institute Affiliated to University of Manthai, Appreval by ALCIE & Recognized by Goot. of Matarashira)

3.2	ISO 14000, ISO 14001, Life Cycle Analysis, Environmental Impact Assessment studies, Sustainable habitat	
3.3	Global environmental issues-Resource degradation, Climate change, Global warming, Ozone layer depletion	
3.4	Sustainable materials-Conventional and renewable material sources, sustainable development, Sustainable urbanization, Industrial Ecology	
	Basic concepts of sustainable habitat and Energy sources	7
4.1	Basic concepts of sustainable habitat, Sustainable materials for building construction	
4.2	Material selection for sustainable design	
4.3	Conventional and non-conventional energy sources-Solar energy, Fuel cells, Wind energy, Small hydro plants, bio-fuels, Energy derived from oceans, Geothermal energy-Methods for increasing energy efficiency of buildings	
4.4	Embodied energy of various construction materials-Energy Management with respect to buildings	
4.5	Clean Development Mechanism	
	Sustainable Engineering	6
5.1	Sustainable Urbanization- Sustainable cities	1
5.2	Sustainable transport-Industrialization and poverty reduction-Social and technological change	
5.3	Industrial Processes: Material selection, Pollution Prevention, Industrial Ecology, Industrial symbiosis	
5.4	Bio-mimicking	
	3.3 3.4 4.1 4.2 4.3 4.4 4.5 5.1 5.2 5.3	Impact Assessment studies, Sustainable habitat3.3Global environmental issues-Resource degradation, Climate change, Global warming, Ozone layer depletion3.4Sustainable materials-Conventional and renewable material sources, sustainable development, Sustainable urbanization, Industrial EcologyBasic concepts of sustainable habitat and Energy sources4.1Basic concepts of sustainable habitat, Sustainable materials for building construction4.2Material selection for sustainable design4.3Conventional and non-conventional energy sources-Solar energy, Fuel cells, Wind energy, Small hydro plants, bio-fuels, Energy derived from oceans, Geothermal energy-Methods for increasing energy efficiency of buildings4.4Embodied energy of various construction materials-Energy Management with respect to buildings4.5Clean Development Mechanism5.1Sustainable Urbanization- Sustainable cities5.2Sustainable transport-Industrialization and poverty reduction-Social and technological change5.3Industrial Processes: Material selection, Pollution Prevention, Industrial Ecology, Industrial symbiosis

6		Sustainable Assessment Systems	6
	6.1	Studying few Green/Sustainable building assessments systems e.g. Living Building Challenge, Green Globes (Green Building Initiative)	

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashim)

Department of Computer Engineering

	(US)	
6.2	LEED India and GRIHA Sustainability Assessment Techniques	
6.3	Green Globes (ECD–Canada, International Initiative for a Sustainable Built Environment: iiSBTool	
6.4	SBModel 15	
	Total	39

Textbooks:

1	Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.						
2	Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning						
3	Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998						
4	Twidell, J. W. and Weir, A. D., Renewable Energy Resources, English Lang.						
5	Prohit, S. S., Green Technology - An approach for sustainable environment, Agrobios publication uage Book Society (ELBS).						
Refe	erence books:						
1	Environment Impact Assessment Guidelines, Notification of Government of India, 2006						
2	ECBC Code 2016, Bureau of Energy Efficiency, New Delhi Bureau of Energy Efficiency Publications-Rating System, TERI Publications - GRIHA Rating System						
3	Ni bin Chang, Systems Analysis for Sustainable Engineering: Theory and Applications, McGraw-Hill Professional.						

atoromeus Institute Affiliated to University of Mambui, Approved by A.LC.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

Internal Assessment:

- 1) Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.
- 2) Mid Term test is to be conducted when approx. 50% syllabus is completed. 3)

Duration of the midterm test shall be one hour.

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/anyMOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
8.	Multiple Choice Questions (Quiz)	05 marks
9.	Peer Review and participation the marks can be left blank (with discretion of faculty)	05 Marks

Enc	End Semester Theory Examination:				
1	Question paper will be of 60 marks				
2	Question paper will have a total of five questions				
3	All questions have equal weightage and carry 20 marks each				
4	Any three questions out of five need to be solved.				

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashtm)

Department of Computer Engineering

COURSE NAME: - ENERGY AUDIT AND MANAGEMENT

Course Code			Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total	
NOE508	Energy Audit and Managem ent (Theory)	03			03			03	
NOE508	Energy Audit and Managem ent (Tutorial)			01			01	01	
	Total Credits					04			

Course Code	Course Name	Teaching Scheme (Teaching Hours)		Credits Assigned			signed	
		Theory	Practical	Tut	Theory	TW	Tut	Total
NOE508	Energy Audit and Managemen t (Theory)	03			03			03

Course	Course Name	Examination Scheme					
Code		Theory		Term Work	Practical &	Total	
		Internal Assessment	End Sem Exam		Oral		

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automoreus Institute Affiliated to University of Municipal, Approval by ALCIE & Recognized by Govt. of Mathematica)

		Mid Term Test	Continuo us Assessme nt			
NOE508	Energy Audit and Managem ent (Theory)	20	20	60	 	100

C	ourse Objectives:						
1	To understand the present state of energy security and its importance.						
2	To understand methodologies adopted in energy audit and Energy Economics						
3	To understand basic principles and Objectives of Energy Management						
4	To understand energy performance evaluation of some common thermal installations and identify the energy saving opportunities						
5	To understand energy performance evaluation of some common electrical installations and identify the energy saving opportunities.						
6	To understand the concept of Energy conservation measures in building complex.						
	ourse Outcomes: fter successful completion of the course students will be able to:						
1	To identify and describe the present state of energy security and its importance.						
2	Identify and describe the methodologies adopted in energy audit and Energy Economics						
3	Identify and describe the basic principles and Objectives of Energy Management						
4	To describe the energy performance evaluation of some common thermal installations and identify the energy saving opportunities						
5	To describe the energy performance evaluation of some common electrical installations and identify the energy saving opportunities.						
6	To identify and describe the concept of Energy conservation measures in building complex.						

(An Autonomous Institute Affiliated to University of Mumboi, Approved by A.LC.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

ENERGY AUDIT AND MANAGEMENT

(THEORY)

Module	Contents						
1	Energy Scenario & Energy Conservation measures	06					
1.1	Present Energy Scenario, Renewable and Non-Renewable form of Energy.						
1.2	Energy Pricing, Energy Sector Reforms.						
1.3	Energy Conservation and its Importance: Energy Conservation Act-2001 and its features. Role of Bureau of Energy Efficiency (BEE), Energy Security.						
2	Energy Audit & Energy Economics	08					
2.1	Energy Audit: Definition, need, types of energy audit, Steps of detailed Energy Audit, Role of Energy Manager and Internal audit Team.						
2.2	Understanding energy costs, Benchmarking, Energy performance, Matching energy use to requirement.						
2.3	Energy Economics: Simple payback period (SPP), Net Present value (NPV), Return on investment (ROI), Internal rate of return (IRR).						

3	Principles and Objectives of Energy Management	08
3.1	Indian need of Energy Management, Duties of Energy Manager, Preparation and presentation of energy audit reports, Monitoring and targeting, some case study and potential energy savings	
3.2	Electricity billing, Basic concept of Electrical load management, Maximum demand Control, Energy efficient equipment and appliances, Star ratings of Electrical Equipment.	
4	Thermal Energy Management	06
4.1	Energy conservation in boilers - steam turbines and industrial heating systems	
4.2	Application of FBC, Cogeneration and waste heat recovery, Thermal insulation - Heat exchangers and heat pumps	

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autorements Institute Affiliated to University of Manthai, Appreval by ALCIE & Recognized by Goot. of Matarashira)

5	Electrical Energy Management	06
5.1	Renovation and modernization of power plants, Reactive power management, Energy efficient motors	
5.2	Lighting System control: Occupancy sensors, daylight integration, and use of intelligent controllers. Energy efficiency measures in lighting system	
6	Energy conservation in Residential and Commercial Buildings	05
6.1	Energy Conservation Building Codes (ECBC)]
6.2	Green Building norms, LEED ratings of buildings, Use of renewable energy sources in building complex	
	Total	39
Textbo	oks:	
1	Murphy, W. R. (2007), Energy Management (1st edition), Elsevier India Private Limited.	
2	De, B. K., (2010), Energy Management audit & Conservation, (2nd Edition), Vri Publication.	nda
Refere	nce books:	
1	Turner, W. C., Doty, S. and Truner, W. C., (2009), Energy Management Hand bo (7thedition), Fairmont Press.	ok,
2	L.C. Witte, P.S. Schmidt, D.R. Brown, (1988) Industrial Energy Management an Utilisation, (1stedition) Hemisphere Publication, Washington	d
3	Elias P. Gyftopoulos, (1982) Industrial Energy Conservation Manuals, (1st edition MIT Press.	on)

Access	Access to Useful links:				
1	https://beeindia.gov.in/content/energy-auditors				
2	https://nptel.ac.in/courses/112105221				

torornous Institute Affiliated to University of Mambai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtm)

Department of Computer Engineering

Interna	Internal Assessment:					
1	Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.					
2	Mid Term test is to be conducted when approx. 50% syllabus is completed.					
3	Duration of the midterm test shall be one hour.					

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No.	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc.	10 marks
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
8	Multiple Choice Questions (Quiz)	05 marks
9	Peer Review and Participation	05 marks

End Semester Theory Examination:				
1	Question paper will be of 60 marks.			

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotion Institute Affiliated to University of Manthai, Apprend by ALCITE & Recognized by Gord, of Maharadam)

Department of	Computer	Engineering
The frank of the second second	Comparer	The second

2	Question paper will have a total of five questions.
3	All questions have equal weightage and carry 20 marks each.
4	Any three questions out of five needs to be solved.

(An Autonomous Institute Affiliated to University of Mambai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

COURSE NAME: - ELECTRIC VEHICLES

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/ PR	Tut	Total
NOE509	Electric Vehicles (Theory)	03			03			03
NOE509	Electric Vehicles (Tutorial)			01			01	01
	Total Credits						04	

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credit	s Assig	ned	
		Theory	Practical	Tut	Theory	TW/ PR	Tut	Total
NOE509	Electric Vehicles (Theory)	03		-	03			03

Course Code	Course Name	Examination Scheme							
		Theory			Term	Practical	Total		
			Internal ssessment	End Sem	Work	& Oral			
		Mid Term Test	Continuous Assessment	Exam					
NOE509	Electric Vehicles (Theory)	20	20	60			100		

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gov. of Maharadam)

C	ourse Objectives:
1	To understand the basics of Electric vehicles and its major parts.
2	To understand different types of electric vehicle and their challenges
3	To understand components of Battery Electrical vehicle
4	To understand components and classifications of Hybrid Electrical vehicle
5	To understand components and architecture of Fuel cell electric vehicle
6	To understand different types of Energy Storage systems
	ourse Outcomes: fter successful completion of the course students will be able to:
1	To explain the basics of Electric vehicles and its major parts.
2	To identify and describe different types of electric vehicle and their challenges
3	To identify and describe different components of Battery Electrical vehicle
4	To identify and describe different components and classifications of Hybrid Electrical vehicle
5	To identify and describe architecture and different components of Fuel cell electric vehicle
6	To identify and describe different types of Energy Storage systems

Autonomous Institute Affiliated to University of Mumbri, Approved by A.LC.T.E.& Recognized by Govt. of Maharashtra)

Department of Computer Engineering

ELECTRIC VEHICLES (THEORY)

Module	Contents	Hrs
1	Introduction to Electric vehicles	06
1.1	Present scenario of electric vehicles, Need of Electric Vehicles, Economic and environmental impacts of using Electrical vehicles.	
1.2	Challenges faced by electric vehicles to replace ICE. Major requirements of electric vehicles.	
2	Types of electric vehicle and their challenges	08
2.1	Types of electric vehicle and their challenges: Types of electric vehicle, Pure Electric Vehicle (PEV): Battery Electric vehicle, Fuel Cell electric vehicle (FCEV), Hybrid Electric vehicle (HEV).	
2.2	Challenges of Battery Electric vehicle, Hybrid Electric Vehicle and Fuel cell Electric vehicle.	
3	Battery Electrical vehicle	08
3.1	Components of BEV drive train, the electric propulsion subsystem - Power converter, Driving wheels, Suspension system, Driveshaft, Mechanical transmission, Electric Motor, power electronics converters (DC-AC/DC DC), The electronic control unit (ECU).	
3.2	The energy source subsystem Battery pack with Battery Management System.	
3.3	On board charger, the auxiliary subsystem -Power steering unit, Common parts between ICE drive train and EV drive train, Differences (modifications/parts to be removed/added) between ICE and EV drive train.	

4	Hybrid Electrical vehicle	08
4.1	Hybrid Electric vehicle (HEV) -Basic architecture of hybrid drive trains, Components of HEV drive train system	
4.2	Classification of HEV: Conventional HEV (Micro, Mild and Full hybrid series hybrid, parallel hybrid, series parallel hybrid, complex hybrid).	
5	Fuel cell electric vehicle	04
5.1	Fuel cell electric vehicle (FCEV) -Basic architecture of FCEV.	

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotors Institute Affiliated to University of Manthai, Apprend by ALCIE & Recognized by Gov. of Maharadam)

5.2	Components of FCEV drive train system.	
6	Energy Storage	05
6.1	Energy Storage: Battery based energy storage, Overview of batteries, Battery Parameters, Battery Charging, regenerative braking,	
6.2	Alternative novel energy sources-solar photovoltaic cells, fuel cells, super capacitors, and flywheels.	
	Total	39

Textb	ooks:
1	Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 2 nd Edition, 2017. (Unit-I, II)
2	Ali Emadi, "Advanced Electric Drive Vehicles (Energy, Power Electronics, and Machines)", CRC Press, 2015. (Unit-III)
3	John G. Hayes and A. Goodarzi, "Electric Powertrain - Energy Systems, Power electronics and drives for Hybrid, electric and fuel cell vehicles", Wiley, 2018. (Unit IV & V)
Refer	ence books:
1	James Larminie, John Lowry, "Electric Vehicle Technology Explained", Wiley, 2 nd Edition 2012.
Acces	s to NPTEL / Swayam Course:
1	https://nptel.ac.in/courses/108106170
2	https://onlinecourses.nptel.ac.in/noc22_ee53
3	https://onlinecourses.nptel.ac.in/noc21_ee112

Intern	Internal Assessment:						
1	Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.						
2	Mid Term test is to be conducted when approx. 50% syllabus is completed.						
3	Duration of the midterm test shall be one hour.						

vatoromeus Institute Affiliated to University of Mambai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc.	10 marks
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
8	Multiple Choice Questions (Quiz)	05 marks
9	Peer Review and Participation	05 marks

End Se	End Semester Theory Examination:					
1	Question paper will be of 60 marks.					
2	Question paper will have a total of five questions.					
3	All questions have equal weightage and carry 20 marks each.					
4	Any three questions out of five needs to be solved.					

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashtm)

Department of Computer Engineering

COURSE NAME: Industrial Automation (Theory)

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theor y	Practica l	Tutoria l	Theor y	TW/P R	Tut	Total
NOE510	Industrial Automati on (Theory)	03		01	03		01	04

Industrial Automation

Course Code	Course Name	Teaching Scheme (Teaching Hours)		Credits Assigned					
		The ory	Practic al	Tutorial	Theory	TW/PR	Tut	Total	
NOE510	Industrial Automati on (Theory)	03	_	01	03	-	01	04	
Course	Course		Examination Scheme						
Code	Name	Theory			Term	Practic	То	Total	
			ernal ssment	End Sem	Work	al & Oral	&		
		Mid - Ter m Test	Contin uous Assess ment	Exam					
NOE510	Industrial Automati on (Theory)	20	20	60			1(00	

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotors Institute Affiliated to University of Manthai, Apprend by ALCIE & Recognized by Gov. of Maharadam)

Course	Course Prerequisite: Digital Electronics, Communication protocols					
Course	Course Objectives:					
1	To impart knowledge of Industrial Automation					
2	To make the students learn industrial sensors and actuators					
3	To make the students learn about controller strategy and various automation tools like PLC, SCADA and DCS					
4	To give an overview of MES and ERP					
	Outcomes: accessful completion of the course students will be able to:					
1	Discuss the need and types of automation					
2	Select and configure industrial sensors and actuators					
3	Identify components of PLC, and develop PLC ladder using instructions of PLC and design PLC based application					
4	Describe SCADA architecture, communication in SCADA					
5	Explain evolution and architecture of DCS, hierarchical control in DCS					
6	Explain database and alarm management system					

Module		Content	Hrs
1		Introduction	04
	1.1	Automation in production system, Principles and strategies of automation, Basic elements of an automated system, types of processes and controllers	

(An Autonomous Institute Affiliated to University of Mamboi, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

1.2	Types of Automation, applications, Hierarchical level in automation,	
	Tutorials	02

2		Sensors and Actuators	06						
	2.1	Introduction to Industrial Measurement, overview of sensors, classification, sensor characteristics, physical principles of sensing							
	2.2	2.2 Inductive sensors, capacitive sensors, vision sensors, ultrasonic sensors, Robotic sensors, Tactile sensing, Proximity sensors, Range sensor, Position sensors, Fibre optic sensors, specifications of sensors							
	2.3 Electrical actuation: A.C and DC motors, stepper motors, servo motors, mechanical switches and solid state switches. Pneumatic and hydraulic-directional and pressure control valves, cylinders, servo proportional control valves, rotary actuators.								
		Tutorials							
3		Programmable Logic Controller	10						
	3.1	Hardware Evolution of PLC, PLC Architecture, Types & Specifications. Safety PLC I/O modules, local and remote I/O expansion, special purpose modules, wiring diagrams of different I/O modules, communication modules, Memory & addressing memory organization, I/O addressing, hardware to software interface.							

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Govt. of Materiadaux)

3.2	Software Introduction to PLC Programming, programming devices, IEC standard PLC programming languages, LD programming- basic LD instructions, PLC Timers and Counters: Types and examples, data transfer & program control instructions, advanced PLC instructions, PID Control using PLC.	
3.3	Case study: PLC selection and configuration for any one process application.	

		Tutorials	04
4		Supervisory Control and Data Acquisition (SCADA)	06
	4.1	SCADA introduction, brief history of SCADA, elements of SCADA. Features of SCADA, Protocol structure, Specifications of SCADA, SCADA as a real time system	
	4.2	Communications in SCADA- types & methods used, components. SCADA Development for any one typical application Programming for GUI development using SCADA software	
		Tutorials	02
5		Distributed Control System (DCS)	08
	5.1	DCS: Overview and Features of DCS, DCS Architecture, Hardware elements, working of DCS, DCS displays, DCS interfacing with PLC, Applications and suppliers.	
	5.2	HMI: Overview, need, Types, Data Handling, configuration and interfacing with PLC & PC.	
		Tutorials	02
6		Database and Alarm Management, MES, ERP	05
	6.1	Introduction to Database management, alarm management system,]

torornous Institute Affiliated to University of Mumbai, Approved by A.L.C.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

6.2	Manufacturing Execution System, Enterprise Resource Planning, and Integration with enterprise system.				
	Tutorials	02			
	Total	39			

Text	books:
1	Johnson Curtis D., Process Control Instrumentation Technology, 8th Ed., 2005
2	Bela G. Liptak, Instrument Engineers' Handbook, Fourth Edition, Volume One: Process Measurement and Analysis, June 27, 2003
3	Thomas Hughes, "Programmable Logic Controller", ISA Publication
Ref	erence Books:
1	Andrew Williams, "Applied instrumentation in the process industries", 2 nd Edition, Vol. 1 & 3, Gulf publishing company
2	Stuart A. Boyer, "SCADA supervisory control and data acquisition", ISA Publication
3	Krishna Kant, "Computer Based Process Control", Prentice Hall of India
4	Gary Dunning, "Introduction to Programmable Logic controller", Thomas Learning, edition, 2001
5	B.C Nakra, K.K. Chaudhary, Instrumentation, Measurement and Analysis, Tata McGraw-Hill Education, Oct 2003
6	Patranabis D, Sensors and Transducers, Prentice Hall India Learning Private Limited; 2 edition (2003)
7	A. K. Sawhney, Puneet Sawhney, A course in Electrical and Electronic Measurement and Instrumentation, Dhanpat Rai and Co. Rai, 1996
8	Andrew Parr, Hydraulic & pneumatics; A Technicians & Engineers Guide, Second Edition

Internal Assessment:

- 1. Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.
- 2. Mid Term test is to be conducted when approx. 50% syllabus is completed.

atoriornees Institute Affiliated to University of Mambai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashtra)

Department of Computer Engineering

3. Duration of the midterm test shall be one hour.

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc.	10 marks
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
8.	Multiple Choice Questions (Quiz)	05 marks
9.	Peer Review and participation the marks can be left blank (with discretion of faculty)	05 Marks

Continuous Assessment will be based on the tutorials undertaken.

End Semester Theory Examination:				
1	Question paper will be of 60 marks			
2	Question paper will have a total of five questions			
3	All questions have equal weightage and carry 20 marks each			
4	Any three questions out of five need to be solved.			

Autonomous Institute Affiliated to University of Mambai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashtm)

Department of Computer Engineering

COURSE NAME: Fundamentals of Robotics

Course	Course Name	Teaching Scheme			Credits Assigned			
Code		(T	(Teaching Hours)					
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NOE511	Fundament als of Robotics	03	-	01	03	-	01	04

Course Code	Course Name	Teaching Scheme (Teaching Hours)				Credits Ass	igned	
		Theory	Practical	Tutori al	Theor y	TW/PR	Tut	Total
NOE511	Fundament als of Robotics	03	-	01	03	-	01	04
Course	Course Name	Examination Scheme						
Code		Theory			Term Practica Work l		Total	
			ternal essment	End Sem		& Oral		
		Mid Term Test	Continuo us Assess me nt	Exam		Ulai		
NOE511	Fundament als of Robotics	20	20	60			1	00

Fundamentals of Robotics

mornous Institute Affiliated to University of Mamitai, Approved by A.LC.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

Course Prerequisite: Basics of control system

Course	Course Objectives:						
1	To provide students with the concepts and techniques for the design, modelling, analysis of robots						
2	To provide students with the fundamental knowledge of machine vision for Robot guidance and automation.						
Course	Outcomes:						
After suc	ccessful completion of the course students will be able to:						
1	Understand and discuss the fundamental elementary concepts of Robotics.						
2	Understand the Anatomy and basic Kinematic of Robots						
3	Classify the different types of grippers and actuators						
4	Understand the basic fundamentals of Machine Vision						
5	Apply the Image enhancement in spatial domain						
6	Understand the colour Image processing in Machine Vision						

Fundamentals of Robotics

	Content	Hrs
1	Introduction To Robotics:	

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autorement Institute Affiliated to University of Manthel, Approved by ALCTE & Recognized by Gord. of Maharadam)

	Introduction to Robotics and Automation, laws of robotics, brief history of robotics, basic components of a robot, robot specifications, classification of robots, human system and robotics, safety measures in robotics, social impact, Robotics market and the future prospects, advantages and disadvantages of robots. Tutorial: Selection of a robot for a user given specification	06
2	Robot Anatomy And Motion Analysis:	
	Anatomy of a Robot, Robot configurations: polar, cylindrical, Cartesian, and jointed arm configurations, Robot links and joints,	12
	Degrees of freedom: types of movements, vertical, radial and rotational traverse, roll, pitch and yaw, Work volume/envelope,	
	Robot kinematics: Introduction to direct and inverse kinematics, transformations and rotation matrix.	
	Tutorial: Calculation of the Direct Kinematic of simple 2R manipulator	
3	Robot Drives And End Effectors:	
	Robot drive systems: Hydraulic, Pneumatic and Electric drive systems, classification of end effectors, mechanical grippers, vacuum grippers, magnetic grippers, adhesive gripper, gripper force analysis and gripper design, 1 DoF, 2 DoF, multiple degrees of freedom robot hand, tools as end effectors, Robot control types: limited sequence control, point-to-point control, playback with continuous path control, and intelligent control.	10
	Tutorial: Given a user specification project, select the actuators and end effectors to be used	

4	Introduction and Digital Image Fundamentals:	
		08

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gov. of Maharadam)

	Digital Image Fundamentals, Human visual system, Image as a 2D data, Image representation – Grey= scale and Colour images, image sampling and quantization, Basic Relationship between Pixels.	
	Tutorial: Using Matlab/Scilab convert Image to grey scale and find histogram	
5	Image enhancement in Spatial domain:	
	Basic grey level Transformations, Histogram Processing Techniques, Histogram equalization, Histogram Matching, Spatial Filtering, Low pass filtering, High pass filtering.	08
	Tutorial: Using Matlab/Scilab apply Spatial Enhancement Techniques	
	Colour Image Processing	
	Colour Fundamentals, Colour Models, Pseudo colour image processing, Colour Transformations, Smoothing and Sharpening, Image Segmentation based on Colour.	08
	Tutorial: Using Matlab/Scilab apply Colour Image Processing Techniques	
	Total	52

Textbook	Textbooks:				
1	S.R. Deb, Robotics Technology and flexible automation, Tata McGraw-Hill Education, 2009.				
2	Mikell P. Groover et. al., "Industrial Robots - Technology, Programming and Applications", McGraw Hill, Special Edition, (2012).				
3	Ganesh S Hegde, "A textbook on Industrial Robotics", University science press, 3rd edition, 2017.				

Department of Computer Engineering

4	Digital Image Processing, 3rd Edition, by Rafael C Gonzalez and Richard E Woods. Publisher: Pearson Education				
5	5 Pratt W.K, —Digital Image Processing ^{II} , 3rd ed., John Wiley & Sons, 2007				
Referen	ce Books:				
1	Richard D Klafter, Thomas A Chmielewski, Michael Negin, "Robotics Engineering – An Integrated Approach", Eastern Economy Edition, Prentice Hall of India Pvt. Ltd., 2006.				
2	Fu K S, Gonzalez R C, Lee C.S.G, "Robotics: Control, Sensing, Vision and Intelligence", McGraw Hill, 1987. https://www.robots.com/applications.				
3	Fundamentals of Digital Image Processing by Anil K Jain, PHI				
Web Links					
1	https://motion.cs.illinois.edu/RoboticSystems/Kinematics.html				
2	https://opencv.org/university/free-opencv-course/				
3	https://onlinecourses.nptel.ac.in/noc21_me76/preview				

Internal Assessment:

- 1. Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.
- 2. Mid Term test is to be conducted when approx. 50% syllabus is completed.
- 3. Duration of the midterm test shall be one hour.

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No.	Rubrics	
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks

(An Autonomous Institute Affiliated to University of Mambui, Approved by A.J.C.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

3	Content beyond syllabus presentation	10 marks
---	--------------------------------------	----------

4	Creating Proof of concept	
5	Mini Project / Extra Experiments/ Virtual Lab	
6	GATE Based Assignment test/Tutorials etc.	
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
8.	Multiple Choice Questions (Quiz)	05 marks
9.	Peer Review and participation the marks can be left blank (with discretion of faculty)	05 Marks

Continuous Assessment will be based on the tutorials undertaken

End Semester Theory Examination:			
1	Question paper will be of 60 marks		
2	Question paper will have a total of five questions		
3	All questions have equal weightage and carry 20 marks each		
4	Any three questions out of five need to be solved.		

n Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashtm)

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashtm)

Department of Computer Engineering

MEA SEM V and VI

Sr. No.	Course Name
1	RTL VLSI Design
2	Robotics
3	Quantum Technologies

in Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

TE Sem V and VI RTL VLSI Design

(An Autonomous Institute Affiliated to University of Mambai, Approved by A.LC.T.E.& Recognized by Govt. of Maharashtni)

Department of Computer Engineering

Semester	Course Name	Teaching scheme (Contact Hours)			Credits Assigned		
		Theory	Prac	Tut	Th	Pr/Tut	Total
v	Advance Digital System Design	3	2		3	1	4
VI	Project Based Learning : Design with VERILOG	3	2 +2*		3	2	5

* Self study : Mini Project slot

Examination Scheme								
Sem	Course Name	T / T		eory End Sem	Exam Duration	Term	Mini Project	Total
		ASS MT	CA	Exam	Duration (hrs.)	Work	Oral	
V	Advance Digital System Design	20	20	60	2	25	25	125
VI	Project Based Learning with VERILOG	20	20	60	2	25		150

Autonomous Institute Affiliated to University of Mumbri, Approved by A.I.C.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

RTL VLSI Design TE Sem V

COURSE NAME: Advance Digital System Design

Course	Course Name	Teaching Scheme (Teaching Hours)			C	Credits Assigned			
Code	Course maine	Theory	Practical	Tutorial	Theory	TW/ PR	i 'l'ut i 'l'ot	Total	
	Advance Digital system Design	03			03			03	

Advance Digital System Design (Theory)

Cours	Course Name		eaching Sche Teaching Hou		Cr	edits A	ssigned	1
e Code		Theory	Practical	Tutorial	Theory	TW/ PR	Tut	Total
	Advance Digital system Design (Theory)	03			03			03

			E	xaminatio	n Scheme		
Course			Theory			Practical	
Code	Course Name	Internal A	ssessment	End	Term	1 Tactical &	Total
Couc		Mid-Ter	СА	Sem	Work	Oral	Iotai
		m Test		Exam			
	Advance Digital						
	system Design	20	20	60			100
	(Theory)						

Cou	Course Prerequisite: Digital System Design, Computer Architecture.					
Cou	Course Objectives:					
1	1 Design and optimize sequential machines (Mealy vs. Moore FSMs).					
2	2 Analyse and synthesize synchronous and asynchronous sequential circuits.					
3	3 Understand the differences between hardwired and micro programmed control units.					
4	4 Design and optimize finite state machines (FSMs) for control logic.					
5	5 Implement micro programmed control units using microcode.					
Cou	Course Outcomes:					

After successful completion of the course students will be able :

1 To analyse, design and implement sequential logic circuits.

(An Autonomous Institute Affiliated to University of Mamboi, Approved by A.LC.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

2	To develop a digital logic and apply it to solve real life problems.
3	To analyse and design clocked synchronous State Machines.
4	To develop a hardwired programmed processor.
5	To Design a Micro programmed controlled processor.
6	To address real world challenges through digital design.

Advance digital System design (Theory)

Mo	dule	Content	Hrs
1		Fundamentals of Sequential Machines	8
	1.1	Design of 4-bit adder, CLA Adder, ones complement adder, BCD adder , Latches, FF, Shift Register and counters	
	1.2	Finite State Machines (FSMs): Mealy vs. Moore models, State transition tables & diagrams, Synchronous vs. asynchronous sequential circuits, Timing considerations (setup/hold time, clock skew), Metastability and synchronization techniques.	
2		Clocked Synchronous State Machine Analysis	8
	2.1	Clocked Synchronous State Machine Analysis: State Machine Structure, Output logic, Characteristics equation, State Minimization techniques, state diagram, state diagram design and examples. State minimization techniques (Partitioning, Implication Tables). State encoding strategies (Binary, One-Hot, Gray Code), Flip-flop selection (D, T, JK) and excitation tables.	
	2.2	Analysis State Machine with DFF, Analysis State Machine with JK-FF.	
3		Clocked Synchronous State Machine Design	8
	3.1	State Table design Example, State assignment.	
	3.2	Synthesis using D-FF and JK-FF Design state machine using state diagrams.	
4		ASM charts and Hazards	4
	4.1	ASM charts, Hazards in sequential circuits (static/dynamic), Testability and fault detection in sequential logic	
5		Hardwired Control Unit Design	
	5.1	Control unit basics and design approaches, Hardwired control: Finite State Machine (FSM) approach, Multi-level control logic implementation, Timing and performance considerations, Case study: Hardwired control in RISC processor	4

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology Institute Affiliated to University of Mumbai, Approved by ALC.T.E.& Recognize

Department of Computer Engineering

		Micro programmed Control Unit Design	7
6	6.1	Microprogramming concepts and terminology, Horizontal vs. vertical microcode, Microinstruction formats and encoding, Microprogram sequencers and control stores, Advantages and disadvantages of microprogramming, Case study: Microprogrammed control in CISC processor	
		Total	39

 (2018). Morris Mano, Michael D. Ciletti, "Digital Design", Pearson Education, Fifth Edition (2013). Carl Hancher, Zvonko Vranesic, Safawat Zaky, "Computer Organization", McGraw Hill Fifth Edition-2002 Reference Books: Donald P. Leach / Albert Paul Malvino/Gautam Saha, "Digital Principles and Applications The McGraw Hill, Eight Edition (2015). Stephen Brown & Zvonko Vranesic, "Fundamentals of Digital Logic Design with VHDL Second Edition, TMH (2009). Frank Vahid, "Digital Design with RTL design, VHDL and VERILOG", John Wiley and Sor Publisher 2011. NPTEL/Swayam Courses: https://cse15-iiith.vlabs.ac.in/List%20of%20experiments.html 	Tex	tbooks:
3 Carl Hancher, Zvonko Vranesic, Safawat Zaky, "Computer Organization", McGraw Hill 3 Fifth Edition-2002 Reference Books: 1 Donald P. Leach / Albert Paul Malvino/Gautam Saha, "Digital Principles and Applications The McGraw Hill, Eight Edition (2015). 2 Stephen Brown & Zvonko Vranesic, "Fundamentals of Digital Logic Design with VHDL Second Edition, TMH (2009). 3 Frank Vahid, "Digital Design with RTL design, VHDL and VERILOG", John Wiley and Son Publisher 2011. NPTEL/Swayam Courses: 1 https://cse15-iiith.vlabs.ac.in/List%20of%20experiments.html	1	John F. Warkerly, "Digital Design Principles and Practices", Pearson Education, Fifth Edition (2018).
 Fifth Edition-2002 Reference Books: Donald P. Leach / Albert Paul Malvino/Gautam Saha, "Digital Principles and Applications The McGraw Hill, Eight Edition (2015). Stephen Brown & Zvonko Vranesic, "Fundamentals of Digital Logic Design with VHDL Second Edition, TMH (2009). Frank Vahid, "Digital Design with RTL design, VHDL and VERILOG", John Wiley and Son Publisher 2011. NPTEL/Swayam Courses: https://cse15-iiith.vlabs.ac.in/List%20of%20experiments.html 	2	Morris Mano, Michael D. Ciletti, "Digital Design", Pearson Education, Fifth Edition (2013).
1 Donald P. Leach / Albert Paul Malvino/Gautam Saha, "Digital Principles and Applications The McGraw Hill, Eight Edition (2015). 2 Stephen Brown & Zvonko Vranesic, "Fundamentals of Digital Logic Design with VHDL Second Edition, TMH (2009). 3 Frank Vahid, "Digital Design with RTL design, VHDL and VERILOG", John Wiley and Sor Publisher 2011. NPTEL/Swayam Courses: 1 1 https://cse15-iiith.vlabs.ac.in/List%20of%20experiments.html	3	Carl Hancher, Zvonko Vranesic, Safawat Zaky, "Computer Organization", McGraw Hill, Fifth Edition-2002
1 The McGraw Hill, Eight Edition (2015). 2 Stephen Brown & Zvonko Vranesic, "Fundamentals of Digital Logic Design with VHDL Second Edition, TMH (2009). 3 Frank Vahid, "Digital Design with RTL design, VHDL and VERILOG", John Wiley and Sor Publisher 2011. NPTEL/Swayam Courses: 1 1 https://cse15-iiith.vlabs.ac.in/List%20of%20experiments.html	Re	ference Books:
2 Second Edition, TMH (2009). 3 Frank Vahid, "Digital Design with RTL design, VHDL and VERILOG", John Wiley and Sor Publisher 2011. NPTEL/Swayam Courses: 1 1 https://cse15-iiith.vlabs.ac.in/List%20of%20experiments.html	1	Donald P. Leach / Albert Paul Malvino/Gautam Saha, "Digital Principles and Applications", The McGraw Hill, Eight Edition (2015).
S Publisher 2011. NPTEL/Swayam Courses: 1 1 https://cse15-iiith.vlabs.ac.in/List%20of%20experiments.html	2	Stephen Brown & Zvonko Vranesic, "Fundamentals of Digital Logic Design with VHDL", Second Edition, TMH (2009).
1 https://cse15-iiith.vlabs.ac.in/List%20of%20experiments.html	3	Frank Vahid, "Digital Design with RTL design, VHDL and VERILOG", John Wiley and Sons Publisher 2011.
	NPT	EL/Swayam Courses:
	1	https://cse15-iiith.vlabs.ac.in/List%20of%20experiments.html
2 https://da-iitb.vlabs.ac.in/List%20of%20experiments.html	2	https://da-iitb.vlabs.ac.in/List%20of%20experiments.html

Internal Assessment:

- 1) Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.
- 2) Mid Term test is to be conducted when approx. 50% syllabus is completed.
- 3) Duration of the midterm test shall be one hour.

Continuous Assessment:

Continuous Assessment is of 20 marks. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	*Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks

B

ality Govt. of Maharashim)

tionomous Institute Affiliated to University of Mambui, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
8.	Multiple Choice Questions (Quiz)	05 marks

*For sr.no.1, the date of the certification exam should be within the term and in case a student is unable to complete the certification, the grading has to be done accordingly.

End	End Semester Theory Examination:					
1	Question paper will be of 60 marks					
2	Question paper will have a total of five questions					
3	All questions have equal weightage and carry 20 marks each					
4	Any three questions out of five need to be solved.					

n Autonomous Institute Affiliated to University of Mumbai, Approved by ALC.T.E.& Recognized by Govt. of Maharashtra)

Department of Computer Engineering

COURSE NAME: <u>Advance Digital System Design LAB</u>

Course	Course Name		eaching Scher eaching Hou		C	credits A	l Tut I Total		
Code	Course maine	Theory	Practical	Tutorial	Theory	TW/ PR	Tut	Total	
	Advance Digital System Design_Lab		02			01		1	

Advance Digital System Design LAB

Course	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code	Course maine	Theory	Practical	Tutorial	Theory	TW/ PR	Tut	Total
	Advance Digital System Design Lab		02			01		01

	Course Name	Examination Scheme							
		Theory							
Course Code		Internal Assessment		End	Term	Practical	Total		
Coue		Mid-T erm	CA	Sem Exam	Work	& Oral	Total		
		Test							
	Advance Digital System Design (LAB)				25		25		

Cours	Course Prerequisite: Digital Design, Computer Organization						
Cours	Course Objectives:						
1	Develop practical skills in designing, simulating, and implementing digital circuits.						
2	Understand the complete workflow from logic design to implementation and testing.						
3	Apply theoretical concepts (Boolean algebra, FSM design, sequential logic) to real-world						
	problems.						
4	Learn debugging techniques for identifying and resolving issues in digital designs.						
Cours	e Outcomes:						

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotors Institute Affiliated to University of Manthai, Apprend by ALCIE & Recognized by Gov. of Maharadam)

After s	After successful completion of the course students will be able :				
1	Design Digital Circuits & Implement combinational logic.				
2	Design Digital Circuits & Implement sequential logic.				
3	Understand cascaded logic implementation with ICs				
4	Debug and verify circuits with breadboards and GPPs.				

Suggest	Suggested Experiments: Students are required to complete at least 10 experiments.					
Sr. No.	Name of the Experiment					
1.	Debugging technique with breadboard and multi meter.					
2.	Implementation 4-bit adder and cascaded adder using 7483.					
3.	Implementation of CLA adder using gates and ICs					
4.	Implementation of Counter using 7490.					
5.	Implementation of Mod counter using 7492.					
6.	Testing of FF and Latches with ICs					
7.	Testing of Static Hazards					
8.	Testing of Dynamic Hazard					
9.	Implementation of FSM circuit with FF, Latches and Gates					
10.	4-5 Experiments with Virtual lab					

Term V	Term Work:						
1	Term work should consist of 8 to 10 experiments.						
2	Journal may include assignments.						
3	The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.						
4	Total 25 Marks (Experiments: 15-marks, Attendance Theory & Practical: 05-marks, Assignments/Quiz/mock viva/activity: 05-marks)						

atoromous Institute Affiliated to University of Mumbai, Approved by A.LC.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

RTL VLSI Design TE Sem VI

COURSE NAME: <u>Project Based Learning with Verilog</u>

Course	Course Name		eaching Sche Feaching Hou	Credits Assigned				
Code		Theor y	Practical	Tutorial	Theory	TW/ PR	Tut	Total
	Project Based Learning with Verilog	03			03			03

<u>Project Based Learning with Verilog (Theory)</u>

Course	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	TW/ PR	Tut	Total
	Project Based Learning with Verilog (Theory)	03			03			03

	Course Name	Examination Scheme							
		Theory							
Course Code		Internal Assessment		End	Term Work	Practical &	Total		
		Mid-T erm Test	CA	Sem Exam	WORK	Oral			
	Project Based Learning with Verilog (Theory)	20	20	60			100		

Course	Course Prerequisite: Digital System Design, Advance Digital System design					
Course	Course Objectives:					
1	Write synthesizable Verilog code for combinational and sequential circuits.					
2	Simulate and verify designs using testbenches.					

(An Autonomous Institute Affiliated to University of Mambai, Approved by A.J.C.T.E.& Recognized by Govt. of Maharashtm)

Department of Computer Engineering

3	Implement designs on FPGAs
4	Debug and optimize Verilog-based digital systems.
5	Design and implement VERILOG based project
Course	e Outcomes:
After s	uccessful completion of the course students will be able :
1	Understand Verilog HDL syntax, data types, and modeling styles.
2	Differentiate between simulation and synthesis in digital design workflows.
3	Design combinational and sequential circuits (e.g., ALUs, FSMs, counters) using
	Verilog.
4	Debug Verilog code using waveform analysis tools
5	Assess timing constraints and critical paths in FPGA-based implementations.
6	Develop a complete FPGA project using veroilog and Demonstrate hardware-software
	co-verification techniques.

Project Based Learning with Verilog (Theory)

Mo	dule	Content	Hrs
1		Introduction to VERILOG HDL	8
	1.1	Verilog as HDL, Levels of Design Description, Concurrency, Simulation and Synthesis, Functional Verification, System Tasks, Programming Language Interface (PLI), Module, Simulation and Synthesis Tools, Test Benches.	
	1.2	introduction, Keywords, Identifiers, White Space Characters, Comments, Numbers, Strings, Logic Values, Strengths, Data Types, Scalars and Vectors, Parameters, Memory, Operators, System Tasks: \$display, \$monitor, \$time	
2		Structural and Dataflow Modeling	8
	2.1	Dataflow : Introduction, Continuous Assignment Structures, Delays and Continuous Assignments, Assignment to Vectors, Operators. Example: gates, full adder	
	2.2	Structural: Instantiating Modules, Port Mapping (Positional and Named), Hierarchical Naming and Scope, Gate-level Modeling (Basic Logic Gates), Parameter, generate block, Examples: Multiplexer, decoder, CLA adder, 4 bit adder	
3		Behavioral Modeling	6

Department of Computer Engineering

	3.1	Behavioral: initial and always Blocks, Procedural Assignments, Control Flow Statements: if, case, for, while, Blocking vs. Non-blocking Assignments, Delay Modeling. Sequential circuits (Flip-flops, counters, shift registers)			
	3.2	Tasks and Functions			
4		Testbenches & Verification			
	4.1	Testbench structure (\$display, \$monitor), Clock generation & reset strategies, Stimulus generation (random, file-based inputs), Waveform analysis. Self-checking Testbenches			
5		RTL Modeling	_		
	5.1	Finite State Machine (FSM) design (Mealy & Moore machines), Memory modeling (RAM, ROM).	5		
		FPGA Implementation & Advanced Topics	7		
6	6.1	Synthesis vs. simulation differences, FPGA architecture overview (LUTs, CLBs, IOBs), Timing constraints & critical path analysis, Optimization techniques (pipelining, resource sharing), Mini-project (UART, PWM, or simple CPU design).			
		Total	39		

Tex	xtbooks:			
1	Samir Palnitkar, "Verilog HDL A guide to Digital Design and Synthesis", 2nd Edition, Pearson Education, (2009)			
2	Stephen Brown & Zvonko Vranesic, "Fundamentals of Digital Logic with Verilog Design", Third Edition, MGH (2014).			
3	Frank Vahid, "Digital Design with RTL design, VHDL and VERILOG", John Wiley and Sons			
3	Publisher 2011.			
NPT	EL/Swayam Courses:			
1	https://onlinecourses.nptel.ac.in/noc24_cs61/preview			
2	https://archive.nptel.ac.in/courses/106/105/106105165/			

Internal Assessment:

- 1) Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.
- 2) Mid Term test is to be conducted when approx. 50% syllabus is completed.
- 3) Duration of the midterm test shall be one hour.

Autonomous Institute Affiliated to University of Mumbai, Approved by A.LC.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	*Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
8.	Multiple Choice Questions (Quiz)	05 marks

*For sr.no.1, the date of the certification exam should be within the term and in case a student is unable to complete the certification, the grading has to be done accordingly.

End	End Semester Theory Examination:			
1	Question paper will be of 60 marks			
2	Question paper will have a total of five questions			
3	All questions have equal weightage and carry 20 marks each			
4	Any three questions out of five need to be solved.			

in Autonomous Institute Affiliated to University of Mambai, Approved by ALCTE & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

COURSE NAME: Project Based Learning with Verilog (LAB)

Course Code	Course Nome	Teaching Scheme (Teaching Hours)			Credits Assigned			
	Course Name	Theor y	Practical	Tutorial	Theory	TW/ PR	Tut	Total
	Project Based Learning with Verilog (LAB)		02			02		02

Project Based Learning with Verilog (LAB)

Course	Course Name		eaching Sche Teaching Hou	Credits Assigned				
Code	Course maine	Theory	Practical	Tutorial	Theory	TW/ PR	Tut	Total
	Project Based Learning with Verilog (LAB)		02			02		02

	Course Name	Examination Scheme						
Course		Theory				Practical		
Code		Internal		End	Term	Oral	Total	
couc		Assessment		Sem	Work			
		MT	CA	Exam		Orai		
	Project Based							
	Learning with				25	25	50	
	Verilog(LAB)							

Course	Course Prerequisite: Digital Design, Computer Organization.				
Course	Course Objectives:				
1	Develop Proficiency in Verilog Coding				
2	Master Simulation and Verification				
3	Optimize Digital Circuits				
4	Debug and Troubleshoot Effectively				
5	Adopt Industry Best Practices				
Course	e Outcomes:				
After su	After successful completion of the course students will be able :				
1	Understand Verilog HDL Fundamentals				
2	Design and Simulate Digital Circuits				

atomornous Institute Affiliated to University of Mumbai, Approved by ALCTE & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

3	Synthesize and Optimize RTL Designs		
4	Debug and Verify Hardware Functionality		
5	Implement FPGA-Based Projects		
6	Work with Industry-Standard Tools		

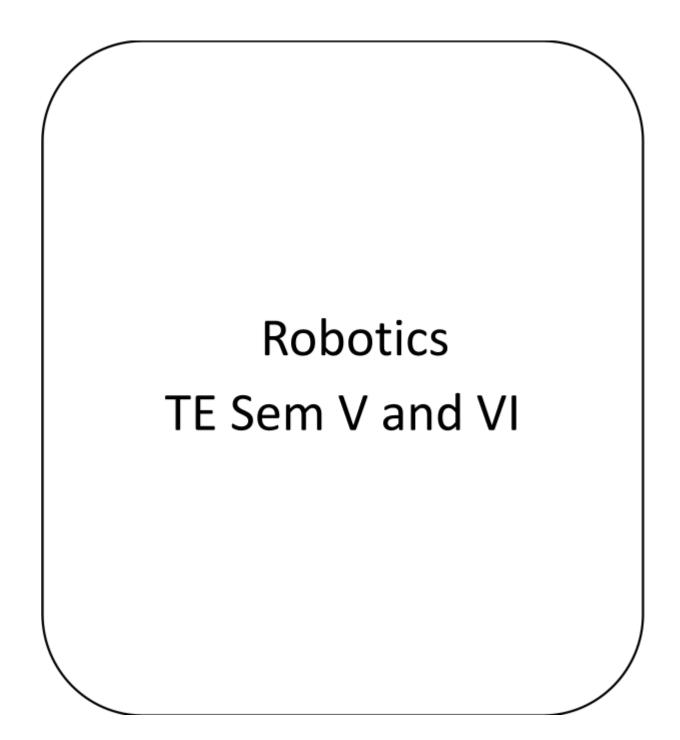
Suggested Experiments: Students are required to complete at least 10 experiments. Suggested Tool : AMD Xilinx Vivado, Intel Quartus, EDA Playground Suggested FPGA Boards : Boolean FPGA Board, Zynq Boards

Sr. No.	Name of the Experiment				
1.	Implement and verify using test bench Data Flow code for different logic gates and Full adders using VERILOG				
2.	Implement and verify using test bench Behavioural code for 4-bit adder				
3.	Implement and verify Generic adder using VERILOG				
4.	Implement and verify using test bench Behavioural code for mux and encoder using VERILOG				
5.	Implement and verify using test bench Behavioural code for demux and decoder using VERILOG				
6.	Implement FF's, Counter using VERILOG				
7.	Implement traffic signal FSM and simulate using VERILOG				
8.	State machine for one's counter using VERILOG				
9.	Implement Multiplier using VERILOG				
10.	Implement RAM using VERILOG				
	MINI Project: Suggested List				
1.	 PWM Generator Concepts: Duty cycle control, counters. Application: LED dimming, motor speed control. 				
2.	 ALU (4 Operations: Add, Sub, AND, OR) Concepts: Multiplexers, RTL design. Extension: Add shift operations. 				

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gov. of Maharadam)

3.	 FIFO Buffer Concepts: Memory modeling, read/write pointers. Challenge: Add overflow/underflow flags.
4.	 UART (Serial Communication) Concepts: Baud rate generation, start/stop bits. Test: Send/receive data between FPGA and PC.
5.	 VGA Signal Generator (Display Patterns) Concepts: Clock domain crossing, metastability. Application: Reliable input for FSMs.
6.	 Debounce Circuit for Pushbuttons Concepts: Clock domain crossing, metastability. Application: Reliable input for FSMs.
7.	 SPI Interface (Master/Slave) Concepts: Serial communication, clock synchronization. Extension: Connect to an ADC (e.g., MCP3008).
8.	 RISC-V Single-Cycle CPU Core Concepts: ISA implementation, control unit design. Minimal: Support 5-10 instructions (ADD, LW, SW, BEQ).
9.	 CNN Accelerator (Fixed-Point Multiplier) Concepts: Pipelining, parallel processing. Simplified: 3x3 convolution for image edge detection.
10.	 Cache Memory Simulator Concepts: Direct-mapped/set-associative caching, LRU policy. Input: Trace files of memory accesses.

Term W	Term Work:					
1	Term work should consist of 8 to 10 experiments.					
2	 Compulsory Mini project [10 Marks]: 1. RTL project must be design and implemented using VERILOG. 2. Simulated with testbench and verified on tool. 3. Synthesized with EDA tool and implemented on FPGA. 4. Small 5-10 pages report to be produced. 					



VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gov. of Maharadam)

3	The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.
4	Suggested TW Mark scheme: Total 25 Marks (Experiments: 10-marks, Attendance Theory & Practical: 05-marks, Mini Project: 10-marks)

Autonomous Institute Affiliated to University of Mumbai, Approved by A.LC.T.E.& Recognized by Govt. of Maharashtra)

(An Autonomous Institute Affiliated to University of Mambai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtm)

Department of Computer Engineering

Robotics TE Semester V

Sem		Teaching Scheme (Contact Hours)			Credits Ass	igned	
Sem	Course Name	Theory	Pract	Tut	Theory	Pract/ tut	Total
V	Fundamentals of Robotics	3	2	-	3	1	4
VI	Industrial Automation and Robotics	3	4	-	3	2	5

	Examination Scheme							
Sem	Course Name	.		eory End Sem Exam	Exam	Term Work	Mini Project	Total
		MT	CA	Exam	(hrs.)	WULK	Oral	
V	Fundamentals of Robotics	20	20	60	2	25	-	125
VI	Industrial Automation and Robotics	20	20	60	2	25	25	150

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

TE Sem V Fundamentals of Robotics

Course Code	Course Name		eaching Scher leaching Hou	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/ PR	Tut	Total
	Fundamentals of Robotics	03			03			03

Fundamentals of Robotics (Theory)

Course	Course Name		eaching Sche Teaching Hou	Credits Assigned				
Code	Course maine	Theory	Practical	Tutorial	Theory	TW/ PR	Tut	Total
	Fundamentals of Robotics	03			03			03

		Examination Scheme						
			Theory					
Course Code	Course Name	Internal Assessment		End	Term	Practical &	Total	
Couc		Mid-T erm Test	СА	Sem Exam	Work	Oral	10141	
	Fundamentals of Robotics	20	20	60			100	

Pre	Prerequisite:				
Co	urse Objectives:				
1	To make students aware about fundamentals of the Robot				
2	Overall study of various components of the robot and robotic manipulators				
3	To study various technical parameters of the robotic systems				
4	Analysis of Robot Movement and control mechanism.				
5	To provide knowledge about Robot trajectory				
6	To explore various areas where Robotics can be adopted				
Co	urse Outcomes: After successful completion of the course student will be able to				
1	To get detailed Knowledge on Robotic Manipulators and Robot components.				
2	To study different Technical Specification of Robot and Mathematical Representation of				
	Robot Movements				

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotion Institute Affiliated to University of Manthai, Apprend by ALCITE & Recognized by Gord, of Maharadam)

3	Robot Control Mechanism
4	To study Direct Kinematics and Inverse Kinematics for Robot
5	To define Robot Trajectory and planning the same
6	To well verse with various application of Robots

Module		Content	Hrs
1	INTR	ODUCTION TO ROBOTICS	
	1.1 1.2	Introduction to Robotics and Automation, Define robot, Laws of robotics, brief history of robotics, basic components of robot, robot specifications, classification of robots, human system and robotics, safety measures in robotics, social impact, Robotics market, and the future prospects, advantages and disadvantages of robots.	6
2	ROB	OT ANATOMY AND MOTION ANALYSIS	
	2.1	Anatomy of a Robot, Robot configurations: polar, cylindrical, Cartesian, and jointed arm configurations, Robot links and joints, Degrees of freedom: types of movements, vertical, radial and rotational traverse, roll, pitch and yaw, Wok volume/envelope, Robot kinematics: Introduction to direct and inverse kinematics, transformations and rotation matrix.	6
3	ROB	OT DRIVES AND END EFFECTORS	
	3.1	Robot drive systems: Hydraulic, Pneumatic and Electric drive systems, classification of end effectors, mechanical grippers, vacuum grippers, magnetic grippers, adhesive gripper, gripper force analysis and gripper design, 1 DoF, 2 DoF, multiple degrees of freedom robot hand, tools as end effectors, Robot control types: limited sequence control, point-to-point control, playback with continuous path control, and intelligent control.	6
4	Kiner	natics of Robots	
		Homogeneous transformation matrices, Inverse transformation matrices, Forward and inverse kinematic equations – position and orientation. Denavit-Hatenberg representation of forward kinematics,Forward kinematic solutions of two DOF, Three DOF and Four DOF (SCARA) robots	

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gov. of Maharadam)

		4.2	Inverse kinematic solutions of two DOF, Three DOF and FourDOF (SCARA) robots.						
1	5		Trajectory and Motion Planning						
	5.1 Trajectory planning, Path Planning and Task Planning Basics of Trajectory planning, Joint-space trajectory planning, Cartesian-space trajectories								
	5.2 Gross motion Planning; Grasp planning, Fine-motion Planning								
	6		Application of Robotics						
		6.1	Medical, agricultural and space applications, unmanned vehicles:Areial Robots, Humanoid and Under water,	6					
			Total	39					
Te	xtboo	ks:							
1		ert Sc licatio	hilling, Fundamentals of Robotics, Analysis and Control, Prentice Hall ns						
2	Dili	p Kun	nar Pratihar, Fundamentals of Robotics, Narosa Publishing House, (2019)						
3			Groover et. al., "Industrial Robots - Technology, Programming and Applicat Hill, Special Edition, (2012).	ions",					
Re	feren	ces:							
1	J. J. Craig, "Introduction to Robotics: Mechanics and Control", 3rd edition, Addison Wesley (2003)								
2	S. K	S. K. Saha, Introduction to Robotics 2e, TATA McGraw Hills Education (2014)							
3	Asit (200		hoshal, Robotics: Fundamental concepts and analysis, Oxford University Pres	S					

atoromeus Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashira)

Department of Computer Engineering

Internal Assessment:

Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks. Mid Term test is to be conducted when approximately 50% syllabus is completed. Duration of the midterm test shall be one hour.

Continuous Assessment:

Continuous Assessment is of 20 marks. The rubrics for assessment will be considered based on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

10110 111		
Sr.	Rubrics	Marks
No.		
1	*Certificate course for 4 weeks or more: NPTEL/ Coursera/	10 marks
	Udemy/any MOOC	
2	Content beyond syllabus presentation	10 marks
3	Creating Proof of concept	10 marks
4	Mini Project / Extra Experiments/ Virtual Lab / Competitive	10 marks
	programming-based event / Group Discussion	
5	Multiple Choice Questions (Quiz)	5 marks
6	GATE Based Assignment/Tutorials etc	10 marks

*For sr. no.1, the date of the certification exam should be within the term and in case a student is unable to complete the certification, the grading has to be done accordingly.

End S	End Semester Theory Examination:					
1	1 Question paper will be of 60 marks					
2	Question paper will have a total of five questions					
3	All questions have equal weightage and carry 20 marks each					
4	4 Any three questions out of five needs to be solved.					

Usefi	Useful Links						
1	https://www.youtube.com/watch?v=svyhLDAoyKc						
2	https://www.youtube.com/watch?v=1-FJhmey7vk						
3	https://motion.cs.illinois.edu/RoboticSystems/Kinematics.html						
4	https://opentextbooks.clemson.edu/wangrobotics/chapter/forward-kinematics/						

Autonomous Institute Affiliated to University of Mumbai, Approved by A.LC.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

Fundamentals of Robotics lab

Course	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code	Course Maine	Theor y	Practical	Tutorial	Theory	TW/ PR	Tut	Total
	Fundamentals of Robotics(LAB)		02			02		02

Project Based Learning with Verilog (LAB)

Course	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code	Course maine	Theory	Practical	Tutorial	Theory	TW/ PR	Tut	Total
	Fundamentals of Robotics(LAB)		02			02		02

		Examination Scheme						
Course		Theory				Practical		
Code	Course Name	Internal Assessment		End Sem	Term Work	Oral	Total	
		MT	CA	Exam		Orai		
	Fundamentals of Robotics(LAB)				25	25	50	

Lab Objectives:

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gov. of Maharadam)

1	1. Understand and apply the principles of Direct Kinematics
	• Derive the position and orientation of the robot's end-effector based on given
	joint parameters.
	• Implement and simulate forward kinematics models for different types of robotic
	manipulators.
	2. Develop and implement trajectory planning algorithms
	 Formulate point-to-point and continuous trajectory planning for robotic arms. Generate smooth and feasible trajectories considering position, velocity, and
	acceleration constraints.
	3. Integrate kinematic models with trajectory planning
	• Combine direct and inverse kinematics with trajectory planning to control robotic
	motion accurately.
	• Simulate end-to-end robotic movement from kinematic model generation to
	trajectory execution.
	4. Enhance skills in simulation tools and programming environments
	• Utilize software such as MATLAB, ROS, or Python for kinematics analysis and
	trajectory planning.
	• Interpret simulation results and validate theoretical models through practical
	experiments. 5. Foster problem-solving and critical thinking
	Troubleshoot issues related to kinematic singularities, redundancy, and path planning in
	robots.
	• Optimize trajectory plans for efficiency, safety, and task-specific requirements.
2	Analyze and solve Inverse Kinematics problems
_	• Determine joint variables that achieve a desired position and orientation of the
	end-effector.
3	• Apply analytical and numerical methods for solving inverse kinematics in
	manipulators with different configurations (e.g., planar, articulated, SCARA robots).
	1000ts).
4	Develop and implement trajectory planning algorithms
	• Formulate point-to-point and continuous trajectory planning for robotic arms.
	• Generate smooth and feasible trajectories considering position, velocity, and
	acceleration constraints.
I ah C	Dutcomes:
1	Apply the concepts of direct kinematics to determine the position and orientation of a
	robotic manipulator's end-effector.
2	Formulate and solve inverse kinematics problems for different types of robotic
	configurations using analytical and numerical approaches

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autorement Institute Affiliated to University of Manthai, Appreval by ALCIE & Recognized by Govt. of Maharabira)

3	Utilize simulation and programming tools (e.g., MATLAB, Python, ROS) to model, analyze, and validate kinematic and trajectory planning algorithms
4	Demonstrate the ability to plan and implement practical robotic tasks, such as pick-and-place, through the integration of kinematics and trajectory planning.

Sugge	Suggested Experiments						
Sr. No.	Name of the Experiment						
1	Implementation of CHCTM for 2 DOF Robotics arm(PARA).						
2	Implementation of CHCTM for 2 DOF Robotics arm (Cylindrical workspace).						
3	Implementation of CHCTM for 3 DOF Robotics arm (PARA).						
4	Implementation of CHCTM for 4 DOF Robotics arm (PARA).						
5	To perform and visualise various types of translations and rotations (and combinations of both) in X-Y Plane.						
6	To perform workspace analysis of 2 DOF and 4 DOF robotic arm.						
7	Implementation of Inverse Kinematics for 2-DOF Robotic arm. (PARA)						
8	Implementation of Inverse Kinematics for 3-DOF Robotic arm. (PARA)						
9	Straight line motion control using ROS.						
10	Various trajectory implementations using ROS.						

U	Useful Links:					
	1	https://www.youtube.com/watch?v=svyhLDAoyKc				
	2	https://www.youtube.com/watch?v=1-FJhmey7vk				

(An Autonomous Institute Affiliated to University of Mambai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

TE Sem VI

Industrial Automation and Robotics

Course	Course Name		eaching Scher Teaching Hou		Credits Assigned			l
Code	Course Maine	Theory	Practical	Tutorial	Theory TW/ PR Tut To			
	Industrial Automation and Robotics	03			03			03

Fundamentals of Robotics (Theory)

Course	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code	Course Maine	Theory	Practical	Tutorial	Theory	TW/ PR	Tut	Total
	Industrial Automation and Robotics	03			03			03

		Examination Scheme							
Course		Theory				Practical			
Code	Course Name	Internal As	sessment	End	Term	Practical & Oral	Total		
Coue		Mid-Term Test	CA	Sem Exam	Work				
	Industrial Automation and Robotics	20	20	60			100		

Prer	Prerequisite:				
Cour	Course Objectives:				
1	To get detailed Knowledge on Automation				
2	To have detailed analysis of How Robots can be major players in automation				
3	To study various Sensors and Actuators				
4	Detailed Study of integrating Sensors and Actuators in Robotic Manipulator				
5	Overview of Industrial Automation				
6	To study various advance applications				
Cour	Course Outcomes: After successful completion of the course student will be able to enhance their				
skills	skills in				
1	Automation Heuristics and Study of Various Robotic Manipulators.				

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gov. of Maharadam)

2	Different Equipments such as Transducers and Actuators and Sensors
3	Image Processing for Robots and factors for Image Processing.
4	Industrial Automation and Process Control
	Data Management in Automation Systems
5	To Study Various Robotics Applications in Various Domain

Module	e Content								
1	Introd	uction							
	1.1	Definition of Automation, Hard Automation and Soft automation. Sense							
		act and control paradigm. Reactive Paradigm. Need of Biological							
		Science in automation. Animal Behavior.							
	1.2	Sensors and actuators. Working Principles of various sensors and							
		actuators. Analog and Digital components for automation. Various							
		Transmission mechanisms. Sensor Characteristics, Types of Sensors,	C C						
		Vision Systems, Voice Synthesizer Characteristics of Actuating	6						
		Systems, Comparison							
		of Actuating Systems, Hydraulic Devices, Pneumatic Devices, Electric							
		Motors, Magnetostrictive Actuators.							
	1.3	Motors, Magnetostrictive Actuators. Self-learning Topics: Microprocessor Control of Electric Motors,							
		Microswitches, Range Finders, Voice Recognition Devices Transducers							
2	Equipments and Transducers								
	2.1	Instrumentation Systems: - Introduction, Block diagram, Functional							
		elements of measurement system, Static and Dynamic characteristics of							
		transducers. Sensor and Transducer: Definition, classification, selection							
		criteria, transducer specifications.							
	2.2	2 Transducers for Displacement: Resistance type transducers:							
		Potentiometer, piezo resistive effect. Inductive type transducers: LVDT,	8						
		RVDT (transfer function, linearity, sensitivity, source frequency							
		dependence, phase null, and signal conditioning). Selection and							
		properties of materials for LVDT and general electromagnetic sensors.							
	2.3	Digital transducers: translation and rotary encoders (absolute position and incremental position encoders). Proximity Sensors: inductive,							
		capacitive, optical, ultrasonic, hall effect and magnetic. Pneumatic							
		transducer: Flapper – nozzle transducer.							
3	Robot	Vision and Task Planning							

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autorements Institute Affiliated to University of Manthai, Appreval by ALCIE & Recognized by Goot. of Matarashira)

orneus instruse Arrithmen to University of Municia, Approved by A.D., T.E. & Recognized by Covil. of M

	3.1 3.2	 Image Acquisition, Image representation, Template matching, Polyhedral objects: Edge Detection, Corner Points, RLE. Shape analysis: Boundary of an Object, Area Description Segmentation, Shrink and swell Operators, Iterative processing, Perspective transform, Camera Calibration Task Planning in Robot Task planner block diagram, task level programming, uncertainty, rotation and gross motion, Motion Heuristics and Grasp Planning 	6
4	Auton	nation	
	4.1	Introduction and Fundamentals: Introduction to Industrial Automation, Architecture of Industrial Automation Systems: different components and their interactions within an automation system. Signal Conditioning and Processing: How sensor signals are prepared for use in control systems. Data Acquisition Systems	
	.2	Introduction to Process Control: The principles of feedback control and process control. P-I-D Control: Proportional-Integral-Derivative control, its implementation, and tuning. Special Control Structures: Feedforward, ratio, cascade, and other advanced control methods. Controller Tuning: Methods for optimizing control system performance. Sequence Control and PLCs: Programmable Logic Controllers (PLCs) and their use in sequence control. Relay Ladder Logic (RLL): The language used to program PLCs. PLC Hardware and Software: Understanding the components and programming environment of PLCs.	8
5	Auton	nation Systems	
	5.1	TYPES OF AUTOMATION SYSTEMS Localized Process, Distributed Process, Supervisory Control and Data Acquisition. Major Functionalities like Data Acquisition, Data Supervision or Monitoring, Process Survey, Process Control, Process Studies, Human Interaction, Data Logging and History Generation, Data Exchange, Data Availability, Current Trends in Automation Systems, Modern Control Center, Application Areas of Automation System.	8
6	Variou	is Robotic Applications	
	6.1	Surgical Robots, Robots in diagnostics	3
	6.2	Industrial Applications of Robots	
	6.3	Automobile Industry and robots, CNC Machines, Case study of Robots in Media Industry	
		Total	39

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotors Institute Affiliated to University of Manthai, Apprend by ALCIE & Recognized by Gov. of Maharadam)

Tex	tbooks:
1	Fundamentals of Robotics Analysis and Control, Robert Schilling PHI Publications
2	Lawrence D. Goettsche, "Maintenance of Instruments and Systems", International Society of Automation, 2nd Edition, 2005.
3	Saeed Niku Introduction to Robotics: Analysis, Control, Applications, 3ed (An Indian Adaptation) Saeed B. Niku, Wiley Editorial Team
4	Norman A. Anderson, "Instrumentation for Process Measurement and Control", CRC Group, Taylor and Francis Group, 3rd Edition, 2010.
	John W. Webb and Ronald A. Reis, "Programmable Logic Controllers: Principles and Applications", 5th Edition, Prentice Hall Inc., New Jersey, 2003. 3. Krishna Kant, "Computer - Based Industrial Control", 2nd Edition, Prentice Hall, New Delhi, 2011. 4. Frank D. Petruzella, "Programmable Logic Controllers", 5th Edition, McGraw-Hill, New York, 2016.
	Ashitava Ghoshal, Robotics-Fundamental Concepts and Analysis', Oxford University Press, Sixth impression, 2010. 2. Richaerd D Klafter, Thomas Achmielewski and MickaelNegin, "Robotic Engineering – An integrated Approach" Prentice Hall India, New Delhi, 2001. 3. Deb S R and Deb S, —Robotics Technology and Flexible Automation, Tata McGraw Hill Education Pvt. Ltd, 2010. 4. Mikell P Groover, "Automation, Production Systems, and Computer-Integrated Manufacturing", Pearson Education, 2015.

Ref	erences:
1	INTRODUCTION TO AI ROBOTICS, SECOND EDITION (Intelligent Robotics and
	Autonomous Agents series) by Robin Murphy
2	Springer Hand Book On Robotics
3	Stephen J. Derby, "Design of Automatic Machinery", Special Indian Edition, Marcel Decker,
	New York, Yesdee publishing Pvt. Ltd, Chennai, 2004.
4	J J Craig, —Introduction to Robotics: Mechanics and Control, Prentice Hall, 2004.
5	R M Murray, Z. Li and S S Sastry, "A Mathematical Introduction to Robotic Manipulation", CRC
	Press, 1994.

torornous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashim)

Department of Computer Engineering

Internal Assessment:

Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks. Mid Term test is to be conducted when approximately 50% syllabus is completed. Duration of the midterm test shall be one hour.

Continuous Assessment:

Continuous Assessment is of 20 marks. The rubrics for assessment will be considered based on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr.	Rubrics	Marks
No.		
1	*Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Content beyond syllabus presentation	10 marks
3	Creating Proof of concept	10 marks
4	Mini Project / Extra Experiments/ Virtual Lab / Competitive programming-based event / Group Discussion	10 marks
5	Multiple Choice Questions (Quiz)	5 marks
6	GATE Based Assignment/Tutorials etc	10 marks

*For sr. no.1, the date of the certification exam should be within the term and in case a student is unable to complete the certification, the grading has to be done accordingly.

End Semester Theory Examination:

L'IIQ V	End Schester Theory Examination.			
1	Question paper will be of 60 marks			
2	Question paper will have a total of five questions			
3	All questions have equal weightage and carry 20 marks each			
4	Any three questions out of five needs to be solved.			

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashtm)

Department of Computer Engineering

Industrial Automation and Robotics Lab

Course	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code	Course Manie	Theor y	Practical	Tutorial	Theory	TW/ PR	Tut	Total
	Industrial Automation and Robotics Lab		02			02		02

Course	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code	Course maine	Theory	Practical	Tutorial	Theory	TW/ PR	Tut	Total
	Industrial Automation and Robotics Lab		02			02		02

		Examination Scheme						
Course			Theory			Practical		
Code	Course Name	Internal Assessment		EndTermSemWork		Oral	Total	
		MT	CA	Exam		Utal		
	Industrial Automation and Robotics Lab				25	25	50	

Prerequisi	Prerequisite:			
Lab Objectives:				
1	To Explore Various Robotic Manipulators and its Components			
2	To study various Technical Parameters of Robots and analyse them			
3	To study various Sensors and actuators and their assembly in Robots			
4	Programming Robots for desired Task			
Lab Outcomes: After Successful Completion of Lab Work Students will be able to				

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Autorements Institute Affiliated to University of Manthel, Approved by ALCTE & Recognized by Gord. of Maharakara)

Department of Computer Engineering

1	Study and Analyse Robotic Manipulators and their Technical Characteristics
2	Apply Technical Knowledge of Various Mechanical Joints in Robot Construction
3	Use of Sensors and Actuators to make robots more Smart and Intelligent.
4	Use of Robot Vision Techniques to make Robot capable to grasp the environment

Sugges	aggested Experiments					
Sr. No.	Name of the Experiment					
1	To Analyse PEAS Factors for Robotic Manipulators (Performance, Environment, Actuators, Sensors) Using Actual Robot Model or Image of Robots					
2	To study Technical Characteristics of Sensors such as IR, Ultrasonic, Optoisolators and Other Analog Sensors.					
3	Motor Interface for Robotic Manipulator					
4	To Perform Pick Up and Place Operation for Robotic Manipulator					
5	To use Sensor for Object Detection and Carry Out Predefined Task for Robots					
6	Study of PLC and Designing PLC for the Particular Tasks					
7	Use of Camera and its Integration with Robots, Use of Camera for Performing Environmental analysis and Apply Image Processing for Acomplition of Task					
8	White Line Follower robot and its Navigation and Control.					
9	PLC Based Experiment					
10	Using Limit Switch, Analog Control Mechanism for Particular Tasks for Robots					
11	Case Study on Assembly Line in Various Industries					
12	Study of 3D printer for Smart Manufacturing					
13	Automated Testing					

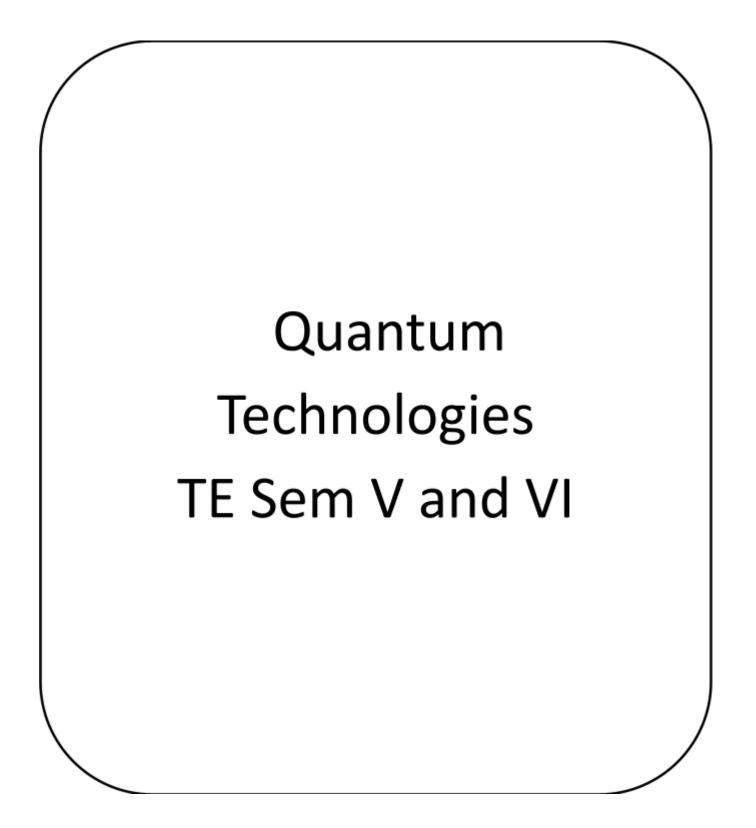
Useful Links:

Autonomous Institute Affiliated to University of Mumbul, Approved by A.LC.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

1	Robotlab <u>https://www.robotlab.com/?srsltid=AfmBOopRDJynj1OA73e3P5CWhN-RcyGevJIOao</u> <u>oNDF9kHokJqtFS_gut</u>
2	Mind Project https://mind.ilstu.edu/curriculum/virtual_robotics_lab/
3	E-Yantra Lab IITB https://www.e-yantra.org/

Applied Robotics Mini Project


Semester long Mini Project on application of Robotics

Following are recommended list of project

- 1. Automated Object Sorting System: Use MATLAB to program a robotic hand that sorts objects based on color, size, or shape using sensor inputs.
- 2. **Grasp Optimization for Robotic Hands:** Develop an algorithm in MATLAB to enhance the grasp stability of robotic hands for different object geometries.
- 3. **Sensor-Based Pick-and-Place Automation:** Build a robotic system that uses distance and motion sensors to perform pick-and-place tasks autonomously.
- 4. **Task Planning for Multi-Finger Robotic Hands:** Create a MATLAB-based task planner for coordinated motion control of multi-finger robotic hands.
- 5. Force Sensing and Feedback System: Design a robotic hand with force sensors to perform delicate operations, like handling fragile objects.
- 6. **Prosthetic Hand Control Using EMG Signals:** Use MATLAB to process electromyography (EMG) signals and control robotic hand movements for prosthetics.
- 7. **Gesture Recognition for Robotic Hand Control:** Implement vision sensors and MATLAB to recognize human hand gestures and replicate them using a robotic hand.
- 8. **Robotic Hand Calibration System:** Develop an automated MATLAB script to calibrate sensors and actuators of a robotic hand for optimal performance.
- 9. **Tactile Feedback for Enhanced Grasping:** Build a system that integrates tactile sensors on robotic fingers to provide real-time feedback for adaptive grasping.
- 10. Autonomous Assembly Line Robot: Combine task planning, sensor data, and a robotic hand to automate repetitive tasks in a simulated assembly line.

Autonomous Institute Affiliated to University of Mumbai, Approved by A.LC.T.E & Recognized by Govt. of Maharashtra)

(An Autonomous Institute Affiliated to University of Mumboi, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtm)

Department of Computer Engineering

TE Sem V and VI Quantum Technologies

		Teaching Scheme (Teaching Hours)				Cred	lits Assig	red
MDM2	Course Name	Theory	Practical	Tutori al	Theory	TW/ PR	Tut	Total
SEM V	Foundations of Quantum Technologies	03	-	02	03	01		4
SEM VI	Semester VI: Quantum Circuits and Algorithms	03	02+02 (Lab+MP)		03	02		5

		Examination Scheme							
	Course Name		Theory						
MDM2		Internal Assessment		End Sem	Term Work	Oral	Total		
		Mid-Term Test	СА	End Sem Exam					
SEM V	Foundations of Quantum Technologies	20	20	60	25	-	125		
SEM VI	Semester VI: Quantum Circuits and Algorithms	20	20	60	25	25	150		

in Autonomous Institute Affiliated to University of Mumbai, Approved by A.LC.T.E.& Recognized by Govt. of Maharashtra)

Department of Computer Engineering

TE Sem V Foundations of Quantum Technologies

Course	Course Nome		eaching Sche Teaching Hou	Credits Assigned				
Code	Course Name	Theory	Practical	Tutorial	Theory	TW/ PR	Tut	Total
	Foundations of Quantum Technologies	3	-	2	3	1		4

Course		Examination Scheme						
	Course Name		Theory			Oral	Total	
Code		Internal A	ssessment	End	Term			
		Mid-Ter m Test	CA	Sem Exam	Work			
	Foundations of Quantum Technologies	20	20	60	-	-	100	

Course Prerequisite: Linear algebra, Matrices, logic gates, Vectors, Probability and Statistics (Basic Review), Complex Numbers, NumPy, Matplotlib **Course Objectives:** Understand the fundamental differences between classical and quantum computation, 1. including the concept of qubits and superposition. Develop the necessary mathematical background, including linear algebra, Pauli matrices, 2. and tensor products, for quantum computing. Analyze quantum systems through measurement theory, Bloch sphere visualization, and 3. the phenomenon of entanglement. Apply the principles of quantum mechanics to build and interpret quantum circuits, 4. understand hardware implementations, and explore real-world applications. 5. **Develop** the necessary mathematical background, including linear algebra, Pauli matrices, and tensor products, for quantum computing. **Course Outcomes:** After successful completion of the course students will be able to: Design and analyze quantum circuits using various quantum gates. 1 2 Understand the principles of quantum algorithms and their advantages over classical algorithms.

(An Autonomous Institute Affiliated to University of Mumbri, Approved by A.I.C.T.E & Recognized by Govt. of Maharashim)

3	Learn key quantum algorithms such as QFT, Grover's, and Shor's algorithm, including
	their mathematical formulation and circuit implementation.
4	Apply quantum algorithms in factoring, search, cryptography and optimization problems.

Module	Content	Hours
1	Introduction to Quantum Computing	5
	Classical vs. Quantum Computing, Bits vs. Qubits, Bra-Ket Notation, Evolution and Key Milestones, Industrial Impact	
2	Mathematical Foundations	7
	Pauli Matrices, Hermitian and Unitary Operators, Spectral Decomposition, Heisenberg Uncertainty Principle, Composite Systems and Tensor Products	
3	Quantum Measurement and Entanglement	7
	Superposition and Measurement, Bloch Sphere Representation, Probability and Density Operators, Mixed States, Bell's Theorem and Quantum Entanglement	
4	Introduction to Quantum Gates and Circuits	
	Unitary Gates and Reversibility, Single-Qubit Gates: X, Y, Z, H, S, T, Phase Gates, Multi-Qubit Gates: CNOT, SWAP Building Quantum Circuits, Measurement in Circuits	
5	Physics of Quantum Devices	5
	Schrödinger Equation and Heisenberg Picture, Density Matrices and Decoherence, Thermal Equilibrium and Gibbs Principle	
6	Quantum Hardware and Applications	7
6.1	Physical Realization of Quantum Gates, Superconducting qubits, Trapped ions, Optical implementations, Quantum Circuit Model:	
6.2	Industrial Applications, Cryptography, Optimization, Drug Discovery	
	Total	39

tonornous Institute Affiliated to University of Mambai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashim)

Department of Computer Engineering

Textb	ooks
1	Elements of Quantum Computation and Quantum Communication, Dr. Anirban Pathak, CRC Press (Taylor & Francis)
2	P.K. Ghosh, Book: "Quantum Mechanics", NCBA (National Council of Educational Research and Training)
3	Quantum Mechanics: Theory and Applications, Dr. Ajoy Ghatak, Dr. S. Lokanathan, Springer India
4	Quantum Computation: A Beginner's Guide, Dr. M. Nakahara, T. Ohmi, CRC Press
Refer	rence Books
1	ebook : Phillip Kaye, Raymond Laflamme et. al., An introduction to Quantum Computing, Oxford University press, 2007. https://files.batistalab.com/teaching/attachments/chem584/Mosca.pdf
2	book url:QUANTUM COMPUTING Jozef Gruska (book detail not available) https://www.fi.muni.cz/usr/gruska/qbook1.pdf
e reso	ources
1	Quantum Computing: Lecture Notes Ronald de Wolf QuSoft, CWI and University of Amsterdam, <u>https://homepages.cwi.nl/~rdewolf/qcnotes.pdf</u> .
2	Quantum computer science by N David Merwin: http://www-f1.ijs.si/~ramsak/Nanofizika/QCS/books_3092_0.pdf

Internal Assessment:

- 1) Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.
- 2) Mid Term test is to be conducted when approx. 50% syllabus is completed.
- 3) Duration of the midterm test shall be one hour.

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers.

The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Content beyond syllabus presentation	10 marks
3	Mini Project / Extra Experiments/ Virtual Lab	10 marks
4	Assignment test/Tutorials etc	10 marks

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gov. of Maharadam)

5	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
6	Multiple Choice Questions (Quiz)	05 marks

End	End Semester Theory Examination			
1	Question paper will be of 60 marks.			
2	Question paper will have a total of five questions.			
3	All questions have equal weightage and carry 20 marks each.			
4	Any three questions out of five need to be solved.			

(An Autonomous Institute Affiliated to University of Mambai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

Foundations of Quantum Technologies Tutorial

		Examination Scheme						
Course		Theory						
Code	Course Name	Internal Assessment		End	Term	Oral	Total	
0000		Mid-Term	CA	Sem	Work	Olui	Totur	
		Test		Exam				
	Foundations of Quantum Technologies	-	-	-	25	-	25	

Sr.No.	Suggested topics for Tutorial
1	Introduction to Quantum Computing: From Bits to Qubits, Elements of Quantum Computation
2	Mathematical Tools for Quantum Computing, Linear Algebra for Quantum Computing (Qiskit Series) (Ref: Anirban Pathak (Chapters 1–2), NPTEL Video: Quantum Computing by Prof. Arvind (IISER Mohali), IBM Quantum Experience (free sign-up) – basic concepts}
3	Quantum States and Measurements Ref: Tool: Bloch Sphere simulator online (IBM Q Experience)
4	Quantum gates (Qiskit textbook: Single-Qubit Gates, IBM Quantum Lab (to run simple gates))
5	Building Quantum Circuits IBM Qiskit Playground (build 2–3 qubit circuits), YouTube: <u>Quantum Circuits Visualized</u> – Veritasium
6	Quantum physics:decoherence Ref: Video: <u>Quantum Decoherence Explained</u> (Veritasium), Simple notes on Density Matrices and Decoherence (TIFR Lecture Series PDF)
Resour	ces
1	Qiskit Tutorials: https://qiskit.org/documentation/tutorials.html IBM Quantum Lab for Practice: https://quantum-computing.ibm.com/lab Quantum Experience Lab Guide (Beginner Friendly): https://quantum-computing.ibm.com/composer/docs/intro

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Govt. of Materiadaux)

Term V	Term Work				
1	Lab work: Minimum 4 experiments/ tutorials/assignments are to be submitted as a part of TW submission.				
2	The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.				
3	Total 25 Marks (Experiments: 15-marks, Term work Assessment: 10-marks)				

Autonomous Institute Affiliated to University of Mumbai, Approved by A.LC.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

TE Sem VI COURSE NAME: QUANTUM CIRCUITS AND ALGORITHMS

Course	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code	Course Name	Theory	Practical	Tutorial	Theory	TW/ PR	Tut	Total
	<u>Quantum</u> <u>Circuits and</u> <u>Algorithms</u>	03	02+02 (Lab+MP)		03	02		5

		Examination Scheme						
Course	Course Name	Theory						
Code		Internal Assessment		End	Term	Oral	Total	
		Mid-Ter m Test	CA	Sem Exam	Work	orui	Totul	
	Quantum Circuits and Algorithms	20	20	60	-	-	100	

Cour	se Prerequisite: Foundations of Quantum Technologies				
Cour	se Objectives:				
1.	To Understand the fundamental principles of quantum computing and how they differ				
	from classical computing.				
2.	To Learn about quantum bits (qubits) and their representation using quantum states.				
3.	To analyze and implement various quantum gates and quantum circuits.				
4.	To develop an understanding of quantum algorithms and their applications.				
5.	To gain hands-on experience in designing simple quantum circuits using quantum				
	computing frameworks.				
Cour	se Outcomes:				
After	successful completion of the course students will be able to:				
1	Differentiate between classical bits and quantum qubits using Bra-Ket notation.				
2	Demonstrate operations using Pauli matrices, Hermitian and Unitary operators, and				
	tensor products in quantum systems.				
3	Interpret quantum states on the Bloch Sphere and explain the principles of superposition,				
	measurement, and entanglement.				
4	Design simple quantum circuits using basic single and multi-qubit gates (X, H, CNOT,				
	etc.).				

(An Autonomous Institute Affiliated to University of Mumboi, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

5	Explain the physical realization of qubits in superconducting, trapped ion, and optical				
	systems.				
6	Evaluate potential industrial applications of quantum computing in fields like				
	cryptography, optimization, and drug discovery.				

Module	Content	Hours
1	Fundamentals of Quantum Gates and Bloch Sphere	6
	Quantum Gates,Bloch sphere representation for quantum gates,Pauli gates (X,Y, Z), Hadamard gate (H), Phase gates (S, T), $\pi/8$ gate,Rotation gates	
2	Multi-Qubit Systems, Reversible Computing and Entanglement	6
	Multi-Qubit Systems, Toffoli and Fredkin gates, Controlled-U operations, Reversible computing, SWAP gate and its role, Entanglement basics	
3	Universal Quantum Gates and Quantum Circuit Design	7
	Universal Quantum Gates: Definition and components, Decomposition into elementary gates, Quantum Circuit Model, Quantum circuit diagrams, Gate synthesis and circuit depth optimization, Quantum adders	
4	Core Concepts in Quantum Computation	6
	Core Concepts in Quantum Computation, No-cloning theorem, Quantum parallelism, Basics of Quantum Algorithms, Comparison of Classical vs Quantum Algorithms, Circuit vs Query Complexity, Quantum Oracle and Phase Oracle	
5	Basic Quantum Algorithms for Parity and Balanced Functions	6
	Algorithm for Parity:Problem, Classical solution, Quantum solution Deutsch Algorithm), Algorithm for Constant and Balanced Functions: Problem, Classical solution, Quantum solution (Deutsch-Jozs Algorithm)	
6	Advanced Quantum Algorithms: Search and Factoring	8
	Algorithm for Secret XOR Mask (Simon's Algorithm), Algorithm for Search:Classical database search, Grover's Concept of amplitude amplification, Algorithms for Factoring:Classical integer factorization problem, Shor's Algorithm, Period finding and order finding	
	Total	39

norneus Institute Affiliated to University of Mambai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

Tex	tbooks
1	Introduction to Classical and Quantum Computing, Thomas G. Wong,
2	Quantum Computing Explained By DAVID McMAHON, Wiley-Interscience, IEEE Computer Society (2008)
3	Quantum Computation and Quantum Information – Nielsen and Chuang, Cambridge University Press. Cambridge, 2010
4	An Introduction to Quantum Computing, P Kaye, R Laflamme and M Mosca, Oxford University Press
5	Learn Quantum Computing with Python and IBM Quantum Experience, A hands-on introduction to quantum computing and writing your own quantum programs with Python, Robert Loredo, Packt Publishing
6	Quantum Communications and Cryptography,Edited By Alexander V. Sergienko, Routledge, Taylor & Francis
7	Elements of Quantum Computation and Quantum Communication, By Anirban Pathak,Routledge, Taylor & Francis
R	eference Books:
1	Quantum Computing and Techniques, Rajiv Chopra, Khanna Publishing House, 2024
2	Principles of Quantum Computation and Information, Vol. I: Basic Concepts, Vol II: Basic T ools and Special Topics, World Scientific.
3	An Introduction to Quantum Computing, Pittenger, Birkhauser Verlag AG
4	Quantum error Correction - Frank Gaitan"Quantum Computing" by N. S. Kumar (Tata McGraw-Hill Education)
Εŀ	Resources
	Learn Quantum Computation Using Qiskit" https://qiskit.org/learn/ 20235.
	https://onlinecourses.nptel.ac.in/noc21_cs103/preview
	https://archive.nptel.ac.in/courses/115/101/115101092/

Internal Assessment:

- 1) Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.
- 2) Mid Term test is to be conducted when approx. 50% syllabus is completed.
- 3) Duration of the midterm test shall be one hour.

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr.	No	Rubrics	Marks
]	1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotions Institute Affiliated to University of Manthai, Approved by ALCIE & Recognized by Gov. of Maharadam)

2	Content beyond syllabus presentation	10 marks
3	Mini Project / Extra Experiments/ Virtual Lab	10 marks
4	Assignment test/Tutorials etc	10 marks
5	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
6	Multiple Choice Questions (Quiz)	05 marks

End Semester Theory Examination:				
1	Question paper will be of 60 marks.			
2	Question paper will have a total of five questions.			
3	All questions have equal weightage and carry 20 marks each.			
4	4 Any three questions out of five need to be solved.			

(An Autonomous Institute Affiliated to University of Mambai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Computer Engineering

QUANTUM CIRCUITS AND ALGORITHMS LAB

		Examination Scheme					
Course		Theory					
Code	Course Name	Internal Assessment		End	Term	Oral	Total
Couc		Mid-Term	CA	Sem	Work	Olui	Total
		Test		Exam			
	Quantum Circuits And Algorithms	-	-	-	25	25	50

Sr. No.	Learning Objectives	
1	Implement key quantum algorithms: Deutsch-Jozsa, Shor, Simon's, and Grover's algorithm.	
2	Understand their computational advantage over classical counterparts.	
3	Analyze quantum speed-up and algorithmic efficiency.	
4	Apply quantum computing concepts to real-world problems through a mini-project.	
Sr. No	Learning Outcomes	
1	Students will write and execute quantum programs to solve problems using Deutsch-Jozsa, Shor's, Simon's, and Grover's algorithms.	
2	Students will compare classical and quantum runtimes for specific problems.	
3	Students will analyze quantum algorithm outputs to validate efficiency.	
4	Students will develop a mini-project demonstrating application of quantum computing to a real-world problem (e.g., cybersecurity, finance, weather forecasting).	

Suggested list of experiments

	1	Qiskit/Cirq for quantum programming
Γ		Single-Qubit Gates:
		Implementation of Pauli Gates (X, Y, Z) and their effects on qubits.

VIVEKANAND EDUCATION SOCIETY'S Institute of Technology (An Automotors Institute Affiliated to University of Manthai, Apprend by ALCIE & Recognized by Gov. of Maharadam)

	Hadamard Gate (H): Creating superposition.
	Phase Gates (S, T): Understanding phase shifts.
	Identity Gate (I): Checking qubit stability.
2	Multi-Qubit Gates:
	CNOT (Controlled-NOT) Gate: Testing quantum entanglement.
	Toffoli Gate: Implementation of classical AND in quantum systems.
	Swap Gate: Exchanging two qubit states.
	Fredkin Gate: Quantum-controlled swap.
3	Entanglement and Measurement Experiments:
	Bell State Generation (Using Hadamard + CNOT).
	GHZ State (Three-qubit entanglement).
	Measurement in different bases (Computational and Hadamard basis).
4	Write a program to implement Deutsch's - Jozsa algorithm : Identifying constant vs. balanced functions.
6	Write a program to implement Shor factorization technique to factor large numbers exponentially faster.
7	Write a program to implement Simon's Algorithm to detect periodic patterns faster than classical methods.
8	Write a program to implement Grover search technique for quadratic speed-up in searching
•	an unsorted database.
9	Prepare case study for any suitable application on quantum encryption methods for Cyber
	security/ financial modeling/ traffic optimization/weather forecasting and climate change etc.
	(Mini project)

Term Work				
1 Lab work: Total 6 experiments out of 8 are to be submitted as a part of TW submission and Mini project.				
2	The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.			
3	3 Total 25 Marks (Experiments: 15-marks, Term work Assessment: 10-marks)			

Practi	Practical & Oral Exam		
1	Based on the subject and related lab of Data Structures Theory and Lab, Total 25 Marks		

Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashim)

tionomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashim)

Department of Computer Engineering

Rules and Regulations

Students_Honours by Research

The **"Honours with Research"** is a **4-year undergraduate degree** that includes a **major research project or dissertation** in the third and fourth year. It allows academically strong students to dive deeper into their subject of interest, preparing them for research careers or direct entry into doctoral programs.

Objectives of the "Honours with Research" Track

- Promote early research orientation in undergraduate education.
- Foster independent thinking and analytical skills.
- Build a pipeline of researchers and innovators.
- Make graduates internationally competitive.

Key Features

To obtain a **B.E./B.Tech. (Honours with Research)** degree:

Feature	Details		
Duration	2 year full time (four semesters.)		
Fees structure	Rs. 20,000/- for the entire course.		
Academic Requirement	1. Must have passed all courses from semesters 1 to 4.		
CGPA Requirement	2. Minimum 7.0 CGPA by end of second year(IVth sem)		
	3. Minimum 7.0 CGPA has to be maintained for 5th and 6th		
	semester also.		
Research Requirement	A full research project/thesis in the 3rd and 4th year earning an		
	additional 18 credits supervised by an academic		
	Final written thesis (~10,000–20,000 words depending on the field).		
Eligibility	1.Only those meeting academic criteria (CGPA, subject credits) can		
	opt-in		
Methodology	1.On the said date, SOP for the problem identified must reach the		
	HOD of the respective department.		
	2.Screening of the said problem statement would be done for the		
	problem statements received at the institute level.		
	3. Final list would then be shared with the students		
Important note	1. Honours by research project has to be different from the		
	regular project		
	2. This project would span a total for 4 semesters.		

nomeus Institute Affiliated to University of Mambai, Approved by A.I.C.T.E & Recognized by Govt. of Maharash

Department of Computer Engineering

Key Guidelines

- Research should be conducted in collaboration with an institute of eminence or with a research organization or internal research work with very high intrinsic value.
- Must be conducted under supervision of VESIT internal faculty
- Encouraged to align with ongoing institutional research or societal/industrial needs.
- Research should reflect originality, problem-solving, and application of domain knowledge. The research should adhere to plagiarism and ethics standards

b. Timeline (Initiated in 5th semester - 8th Semester)

- Semester 5: 4 credits
 - o Finalize topic & research guide
 - o Submit proposal & begin initial work
 - o Literature review
 - o Termwork : 50 marks Presentation and oral : 50 marks
- Semester 6: 5 credits
 - o Methodology Design
 - o Initiation of implementation
 - o Midterm review
 - o Submit progress report
 - o Termwork : 50 marks, Presentation and oral : 100 marks
- Semester 7: 4 credits
 - o Complete experimental/simulation work
 - o Submit progress report
 - o Termwork : 50 marks, Presentation and oral : 50 marks
- Semester 8: 5 credits
 - o Research Publications/Patent/Product
 - o Final report submission
 - o Oral defense (viva)
 - o Termwork : 50 marks, Presentation and oral : 100 marks

a. Term work Component :-

It focuses on regular work, engagement and quality of research development.

Components of Term Work (Total: 50 Marks or Equivalent Credits)

(An Autonomous Institute Affiliated to University of Mamboi, Approved by A.I.C.T.E.& Recognized by Govt. of Maharashtm)

Department of Computer Engineering

Component	Description
Research Proposal	Problem identification, literature review, objectives
Literature Review	Depth, currency, relevance, proper citations
Methodology Design	Clarity in experimental setup or analytical framework
Implementation Work	Coding, simulation, modeling, or lab work
Innovation/Originality	Novelty of approach or findings, critical thinking
Progress Reports	Monthly or bi-monthly updates, mentor feedback
Documentation Quality	Interim reports, thesis structure, formatting
Presentation & Viva	Mid-term and final evaluation by a panel
Logbook/Research Diary	Record of weekly progress, meetings, and reflections
Ethics & Plagiarism	Ethical standards, plagiarism check compliance (e.g.,<10%)

Suggested Assessment Tools:

Criteria	Excellent (4)	Good (3)	Satisfactory (2)	Needs Improvem ent (1)
Research Proposal	Clear, original, well-structured	Relevant and clear	Adequate, lacks depth	Vague, lacks direction
Literature Review	Comprehensive, current	Good coverage	Limited sources	Incomplete or irrelevant
Methodology	Well-designed and justified	Good design	Basic approach	Inadequate or unclear
Implementation	Thorough and accurate	Complete	Partially Complete	Incomplete or flawed
Progress & Commitment	Regular updates, highly engaged	Good progress	Irregular effort	Lacks consistency
Report Quality	Clear, well-structured, properly cited	Well-written	Some structure issues	Poorly organized
Presentation & Viva	Confident, clear, responsive	Clear and adequate	Lacks clarity	Unclear or unprepared
Research Diary / Logbook	Detailed and consistent	Complete	Some missing entries	Not maintained

Autonomous Institute Affiliated to University of Mumbai, Approved by A.LC.T.E & Recognized by Govt. of Maharashim)

Department of Computer Engineering

Scoring Guide:

- Total Score (out of 50/100)
- Grades:

O (95-100), **A** (85-94), **B** (75–84), **C** (60–74), **D** (<60)

Other Rules :-

- Strict deadlines for thesis submission.
- Academic integrity and ethical research compliance.
- You may be required to attend seminars or research training workshops.